CHAPTER

4

INPUT/OUTPUT ORGANIZATION

CHAPTER OBJECTIVES

In this chapter you will learn about:

» How program-controlled 1/0 is performed using polling

» The idea of interrupts and the hardware and software needed to
support them

» Direct memory access as an 1/0 mechanism for high-speed
devices

« Data transfer over synchronous and asynchronous buses

* The design of /O interface circuits

« Commercial bus standards, in particular the PCI. SCSI. and
USB buses

203

204

.

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

Ohnne of the basic features of a computer is its ability to exchange data with other de-
vices. This communication capability enables a human operator, for example, to use
a keyboard and a display screen to process text and graphics. We make extensive use
of computers to communicate with other computers over the Internet and access infor-
mation around the globe. In other applications, computers are less visible but equally
important. They are an integral part of home appliances, manufacturing equipment,
transportation systems, banking and point-of-sale terminals. In such applications, input
to a computer may come from a sensor switch, a digital camera, a microphone, or a
fire alarm. Output may be a sound signal to be sent to a speaker or a digitally coded
command to change the speed of a motor, open a valve, or cause a robot to move in
a specified manner. In short, a general-purpose computer should have the ability to
exchange information with a wide range of devices in varying environments.

In this chapter, we will consider in detail various ways in which I/O operations are
performed. First, we will consider the problem from the point of view of the programmer.
Then, we will discuss some of the hardware details associated with buses and /O
interfaces and introduce some commonly used bus standards.

% ACCESSING VO DEVICES

A simple arrangement to connect I/O devices to a computer is o use a single bus
arrangement, as shown in Figure 4.1. The bus enables all the devices connected to it to
exchange information. Typically. it consists of three sets of lines used to carry address.
data, and control signals. Each I/O device is assigned a unique set of addresses. When the
processor places a particular address on the address lines, the device that recognizes this
address responds to the commands issued on the control lines. The processor requests
either a read or a write operation. and the requested data are transferred over the data
lines. As mentioned in Section 2.7, when I/O devices and the memory share the same
address space. the arrangement is called memorv-mapped l/0.

With memory-mapped 1/0, any machine instruction that can access memory can
be used to transfer data to or from an I/0 device. For example, it DATAIN is the address

Processor Memory

Bus

[/0 device | o o o 170 device n

Figure 4.1 A single-bus structure.

4.1 ACCESSING VO DEVICES
of the input buftfer associated with the keyboard. the instruction
Move DATAIN.R0

reads the data from DATAIN and stores them into processor register RO. Similarly, the
instruction

Move RO.DATAOUT

sends the contents of register RO to location DATAOUT. which may be the output data
buffer of a display unit or a printer.

Most computer systems use memory-mapped I/O. Some processors have special
In and Out instructions to perform /O transfers. For example, processors in the Intel
family described in Chapter 3 have special /O instructions and a separate 16-bit address
space for [/O devices. When building a computer system based on these processors, the
designer has the option of connecting /0 devices to use the special /O address space
or simply incorporating them as part of the memory address space. The latter approach
is by far the most common as it leads to simpler software. One advantage of a separate
[/0 address space is that I/O devices deal with fewer address lines. Note that a separate
1/0 address space does not necessarily mean that the I/0 address lines are physically
separate from the memory address lines. A special signal on the bus indicates that the
requested read or write transfer is an 1/0 operation. When this signal is asserted, the
memory unit ignores the requested transfer. The I/0 devices examine the low-order bits
ot the address bus to determine whether they should respond.

Figure 4.2 illustrates the hardware required to connect an I/0O device to the bus.
The address decoder enables the device to recognize its address when this address
appears on the address lines. The data register holds the data being transferred to or
{rom the processor. The status register contains information relevant to the operation
of the /O device. Both the data and status registers are connected to the data bus and

Address lines

Bus Data lines

Control lines

Data and 5 1/0
status registers interface

Address
decoder

Control
cireuits

Input device

Figure 4.2 1/O interface for an input device.

205

206

Example 4.1

CHAPTER 4 -+ DNPUT/OUTPUT ORGANIZATION

assigned unique addresses. The address decoder. the data and status registers. and the
control circuitry required to coordinate /O transfers constitute the device’s interface
circuit.

1/0 devices operate at speeds that are vastly different from that of the processor.
When a human operator is entering characters at a keyboard. the processor is capable of
executing millions of instructions between successive character entries. An instruction
that reads a character from the keyboard should be executed only when a character is
available in the input buifer of the keyboard interface. Also. we must make sure that an
input character is read only once.

The basic ideas used for performing input and output operations were introduced
in Section 2.7. For an input device such as a keyboard. a status flag. SIN. is included in
the interface circuit as part of the status register. This flag is set to 1 when a character
is entered at the keyboard and cleared to 0 once this character is read by the processor.
Hence, by checking the SIN flag. the software can ensure that it is always reading valid
data. This is often accomplished in a program loop that repeatedly reads the status
register and checks the state of SIN. When SIN becomes equal to [. the program reads
the input data register. A similar procedure can be used to control output operations
using an output status flag. SOUT.

To review the basic concepts. let us consider a simple example of I/O operations involv-

ing a keyboard and a display device in a computer system. The four registers shown
in Figure 4.3 are used in the data transfer operations. Register STATUS contains two
control flags. SIN and SOUT. which provide status information for the keyboard and
the display unit. respectively. The two flags KIRQ and DIRQ in this register are used
in conjunction with interrupts. They. and the KEN and DEN bits in register CON-
TROL. will be discussed in Section 4.2. Data from the keyboard are made available

DATAIN
DATAOUT

STATUS DIRQ| KIRQ| SOUT] SIN
CONTROL DEN | KEN

7 6 s 4 3

12

Figure 4.3 Registers in keyboard and display interfaces.

4.1 ACCESSING YO DEVICES

AMove #LINE.RO [uitialize memory pointer.
WAITIK TestBit #0.STATUS Test SIN.
Branch=0 WAITK Whait for character 1o be entered.
Move DATAIN.R1 Read character.
WAITD TestBit #1.STATUS Test SOUT.
Branch=0 WAITD Wait for display to become ready.
NMove RI.DATAOUT Send character to display.
Move RL.(RO)+ Store charater and advance pointer.
Compare #S0D.R1 Check if Carriage Return.
Branch#0 WAITK If not. get another character,
Move #SOADATAOUT Otherwise. send Line Feed.
Call PROCESS C'all a subroutine to process the

the input line.

Figure 4.4 A program that reads one line from the keyboard, stores it in memory buffer,
and echoes it back to the display.

in the DATAIN register. and data sent to the display are stored in the DATAOUT
register.

The program in Figure 4.4 is similar to that in Figure 2.20. This program reads a
line of characters from the keyboard and stores it in a memory buffer starting at location
LINE. Then. it calls a subroutine PROCESS to process the input line. As each character
is read. it is echoed back to the display. Register RO is used as a pointer 1o the memory
buffer arca. The contents of RO are updated using the Autoincrement addressing mode
so that successive characters are stored in successive memory locations.

Each character is checked to see if it is the Carriage Return (CR) character. which
has the ASCII code 0D (hex). If it is. a Line Feed character (ASCII code 0A) is
sent 10 move the cursor one line down on the display and subroutine PROCESS
is called. Otherwise. the program loops back to wait for another character from the
keyboard.

This example illustrates program-controlled I/0, in which the processor repeatedly
checks a status flag to achieve the required synchronization between the processor and
an input or output device. We say that the processor polls the device. There are two
other commonly used mechanisms for implementing /O operations: interrupts and
direct memory access. In the case of interrupts. synchronization is achieved by having

the 1/0 device send a special signal over the bus whenever it is ready for a data transfer

operation. Direct memory access is a technique used for high-speed I/O devices. Tt
involves having the device interface transfer data directly to or from the memory.
without continuous involvement by the processor. We will discuss these mechanisms
in the next three sections. Then, we will examine the hardware involved. which includes
the processor bus and the /O device interface.

207

208

Example 4.2

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

4.2 INTERRUPTS

In the example of Figure 4.4, the program enters a wait loop in which it repeatedly
tests the device status. During this period. the processor is not performing any useful
computation. There are many situations where other tasks can be performed while
waiting for an I/0 device to become ready. To allow this to happen. we can arrange for
the 170 device to alert the processor when it becomes ready. It can do so by sending
a hardware signal called an interrupt to the processor. At least one of the bus control
lines. called an interrupt-request line. is usually dedicated for this purpose. Since the
processor is no longer required to continuously check the status of external devices. it
can use the waiting period to perform other useful functions. Indeed. by using interrupts.
such waiting periods can ideally be eliminated.

Consider a task that requires some computations to be performed and the results to
be printed on a line printer. This is followed by more computations and output. and
so on. Let the program consist of two routines, COMPUTE and PRINT. Assume that
COMPUTE produces a set of 11 lines of output. to be printed by the PRINT routine.

The required task may be performed by repeatedly executing first the COMPUTE
routine and then the PRINT routine. The printer accepts only one line of text at a time.
Hence. the PRINT routine must send one line of text. wait for it to be printed. then
send the next line. and so on. until all the results have been printed. The disadvan-
tage of this simple approach is that the processor spends a considerable amount of
time waiting for the printer 1o become ready. If it is possible to overlap printing and
computation. that is. to execute the COMPUTE routine while printing is in progress. a
faster overall speed of execution will result. This may be achieved as follows. First, the
COMPUTE routine is executed to produce the first 12 lines of output. Then. the PRINT
routine is executed to send the first line of text to the printer. At this point. instead of
waiting for the line to be printed. the PRINT routine may be temporarily suspended
and execution of the COMPUTE routine continued. Whenever the printer becomes
ready. it alerts the processor by sending an interrupt-request signal. In response. the
processor interrupts execution of the COMPUTE routine and transfers control to the
PRINT routine. The PRINT routine sends the second line to the printer and is again
suspended. Then the interrupted COMPUTE routine resumes execution at the point of
interruption. This process continues until all # lines have been printed and the PRINT
routine ends.

The PRINT routine will be restarted whenever the next set of n2 lines is available
for printing. If COMPUTE takes longer to generate n lines than the time required to
print them. the processor will be performing useful computations all the time.

it

This example illustrates the concept of interrupts. The routine executed in response 10
an interrupt request is called the interrupt-service routine, which is the PRINT routine
in our example. Interrupts bear considerable resemblance to subroutine calls. Assume
that an interrupt request arrives during execution of instruction ¢ in Figure 4.5. The

4.2 INTERRUPTS

Program | Program 2
COMPUTE routine PRINT routine

| |
2
Interrupt .
oceurs —ew .
here .
i+ 1 - .
M

Figure 4.5 Transfer of control through the use of interrupts.

processor first completes execution of instruction 7. Then. it loads the program counter
with the address of the first instruction of the interrupt-service routine. For the time
being. let us assume that this address is hardwired in the processor. After execution
of the interrupt-service routine. the processor has to come back to instruction i + 1.
Therefore. when an interrupt occurs, the current contents of the PC. which point to
instruction i + 1. must be put in temporary storage in a known location. A Return-
from-interrupt instruction at the end of the interrupt-service routine reloads the PC
from that temporary storage location, causing execution to resume at instruction i + 1.
In many processors. the return address is saved on the processor stack. Alternatively. it
may be saved in a special location. such as a register provided for this purpose.

We should note that as part of handling interrupts. the processor must inform the
device that its request has been recognized so that it may remove its interrupt-request
signal. This may be accomplished by means of a special control signal on the bus. An
interrupt-acknowledge signal. used in some of the interrupt schemes to be discussed
later. serves this function. A common alternative is to have the transfer of data between
the processor and the 1/0 device interface accomplish the same purpose. The execution
of an instruction in the interrupt-service routine that accesses a status or data register
in the device intertace implicitly informs the device that its interrupt request has been
recognized.

So far. treatment of an interrupt-service routine is very similar to that of a subroutine.
An important departure from this similarity should be noted. A subroutine performs
a function required by the program from which it is called. However. the interrupt-
service routine may not have anything in common with the program being executed
at the time the interrupt request is received. In fact, the two programs often belong to
different users. Therefore. before starting execution of the interrupt-service routine, any
information that may be altered during the execution of that routine must be saved. This
information must be restored before execution of the interrupted program is resumed.
In this way. the original program can continue execution without being affected in any

209

210

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

way by the interruption. except for the time delay. The information that needs to be
saved and restored typically includes the condition code flags and the contents of any
registers used by both the interrupted program and the interrupt-service routine.

The task of saving and restoring information can be done automatically by the
processor or by program instructions. Most modern processors save only the minimum
amount of information needed to maintain the integrity of program execution. This
is because the process of saving and restoring registers involves memory transfers
that increase the total execution time. and hence represent execution overhead. Saving
registers also increases the delay between the time an interrupt request is received and the
start of execution of the interrupt-service routine. This delay is called interrupt latency.
In some applications. a long interrupt latency is unacceptable. For these reasons. the
amount of information saved automatically by the processor when an interrupt request is
accepted should be kept to a minimum. Typically. the processor saves only the contents
of the program counter and the processor status register. Any additional information
that needs to be saved must be saved by program instructions at the beginning of the
interrupt-service routine and restored at the end of the routine.

In some earlier processors. particularly those with a small number of registers.
all registers are saved automatically by the processor hardware at the time an interrupt
request is accepted. The data saved are restored to their respective registers as part of the
execution of the Return-from interrupt instruction. Some computers provide (wo types
of interrupts. One saves all register contents. and the other does not. A particular /O
device may use either type. depending upon its response-time requirements. Another
interesting approach is to provide duplicate sets of processor registers. In this case. a
different set of registers can be used by the interrupt-service routine. thus eliminating
the need to save and restore registers.

An interrupt is more than a simple mechanism for coordinating /O transfers. In
a general sense. interrupts enable transfer of control from one program to another to
be initiated by an event external to the computer. Execution of the interrupted program
resumes after the execution of the interrupt-service routine has been completed. The
concept of interrupts is used in operating systems and in many control applications
where processing of certain routines must be accurately timed relative to external
events. The latter type of application is referred to as real-time processing.

4.2.1 INTERRUPT HARDWARE

We pointed out that an [/O device requests an interrupt by activating a bus line called
interrupt-request. Most computers are likely to have several 1/0 devices that can request
an interrupt. A single interrupt-request line may be used to serve n devices as depicted
in Figure 4.6. All devices are connected to the line via switches to ground. To request
an interrupt, a device closes its associated switch. Thus. if all interrupt-request signals
INTR,; to INTR,, are inactive. that is. if all switches are open. the voltage on the
interrupt-request line will be equal to Vyy. This is the active state of the line. When
a device requests an interrupt by closing its switch. the voltage on the line drops to 0.
causing the interrupt-request signal. INTR. received by the processor to go to 1. Since
the closing of one or more switches will cause the line voltage to drop to 0. the value

4.2 INTERRUPTS

Y

Processor

INTR
INTR —-o<}

— INTRI — INTR2 - - — INTR#n

Figure 4.6 An equivalent circuit for an open-drain bus used to implement a common
interrupt-request line.

of INTR is the logical OR of the requests from individual devices. that is.
INTR = INTR,| +--- + INTR,,

It is customary to use the complemented form, INTR. to name the interrupt-request
signal on the common line. because this signal is active when in the low-voltage state.

In the electronic implementation of the circuit in Figure 4.6. special gates known as
open-collector (for bipolar circuits) or open-drain (for MOS circuits) are used to drive
the INTR line. The output of an open-collector or an open-drain gate is equivalent to
a switch to ground that is open when the gate’s input is in the 0 state and closed when
it is in the | state. The voltage level. hence the logic state. at the output of the gate is
determined by the data applied to all the gates connected to the bus. according to the
equation given above. Resistor R is called a pull-up resistor becausc it pulls the line
voltage up to the high-voltage state when the switches are open.

4.2.2 ENABLING AND DISABLING INTERRUPTS

The facilities provided in a computer must give the programmer complete control over
the events that take place during program execution. The arrival of an interrupt request
from an external device causes the processor to suspend the execution of one program
and start the execution of another. Because interrupts can arrive at any time. they
may alter the sequence of events from that envisaged by the programmer. Hence. the
interruption of program execution must be carefully controlled. A fundamental facility
found in all computers is the ability to enable and disable such interruptions as desired.
We will now examine this and related facilities in some detail.

There are many situations in which the processor should ignore interrupt requests.
For example. in the case of the Compute-Print program of Figure 4.5. an interrupt
request from the printer should be accepted only if there are output lines to be printed.
After printing the last line of a set of n lines. interrupts should be disabled until another
set becomes available for printing. In another case. it may be necessary to guarantee that

211

212

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

a particular sequence of instructions is executed to the end without interruption because
the interrupt-service routine may change some of the data used by the instructions in
question. For these reasons, some means for enabling and disabling interrupts must be
available to the programmer. A simple way is to provide machine instructions, such as
Interrupt-enable and Interrupt-disable, that perform these functions.

Let us consider in detail the specific case of a single interrupt request from one
device. When a device activates the interrupt-request signal, it keeps this signal activated
until it learns that the processor has accepted its request. This means that the interrupt-
request signal will be active during execution of the interrupt-service routine, perhaps
until an instruction is reached that accesses the device in question. It is essential to
ensure that this active request signal does not lead to successive interruptions, causing
the system to enter an infinite loop from which it cannot recover. Several mechanisms
are available to solve this problem. We will describe three possibilities here; other
schemes that can handle more than one interrupting device will be presented later.

The first possibility is to have the processor hardware ignore the interrupt-request
line until the execution of the first instruction of the interrupt-service routine has been
completed. Then, by using an Interrupt-disable instruction as the first instruction in
the interrupt-service routine, the programmer can ensure that no further interruptions
will occur until an Interrupt-enable instruction is executed. Typically, the Interrupt-
enable instruction will be the last instruction in the interrupt-service routine before
the Return-from-interrupt instruction. The processor must guarantee that execution
of the Return-from-interrupt instruction is completed before further interruption can
occur.

The second option, which is suitable for a simple processor with only one interrupt-
request line, is to have the processor automatically disable interrupts before starting
the execution of the interrupt-service routine. After saving the contents of the PC and
the processor status register (PS) on the stack. the processor performs the equivalent
of executing an Interrupt-disable instruction. It is often the case that one bit in the
PS register, called Interrupt-enable, indicates whether interrupts are enabled. An in-
terrupt request received while this bit is equal to 1 will be accepted. After saving the
contents of the PS on the stack, with the Interrupt-enable bit equal to 1, the processor
clears the Interrupt-enable bit in its PS register. thus disabling further interrupts. When
a Return-from-interrupt instruction is executed, the contents of the PS are restored
from the stack, setting the Interrupt-enable bit back to 1. Hence, interrupts are again
enabled.

In the third option, the processor has a special interrupt-request line for which the
interrupt-handling circuit responds only to the leading edge of the signal. Such a line
is said to be edge-triggered. In this case, the processor will receive only one request.
regardless of how long the line is activated. Hence, there is no danger of multiple
interruptions and no need to explicitly disable interrupt requests from this line.

Before proceeding to study more complex aspects of interrupts, let us summarize
the sequence of events involved in handling an interrupt request from a single device.
Assuming that interrupts are enabled, the following is a typical scenario:

1. The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

4.2 INTERRUPTS

3. Interrupts are disabled by changing the control bits in the PS (except in the case of
edge-triggered interrupts).

4. The device is informed that its request has been recognized. and in response, it
deactivates the interrupt-request signal.

5. The action requested by the interrupt is performed by the interrupt-service routine.
Interrupts are enabled and execution of the interrupted program is resumed.

4.2.3 HANDLING MULTIPLE DEVICES

Let us now consider the situation where a number of devices capable of initiating
interrupts are connected to the processor. Because these devices are operationally inde-
pendent, there is no definite order in which they will generate interrupts. For example.
device X may request an interrupt while an interrupt caused by device Y is being ser-
viced. or several devices may request interrupts at exactly the same time. This gives
rise to a number of questions:

1. How can the processor recognize the device requesting an interrupt?

2. Giventhat different devices are likely to require different interrupt-service routines.
how can the processor obtain the starting address of the appropriate routine in each
case?

3. Should a device be allowed to interrupt the processor while another interrupt is
being serviced?

4. How should two or more simultaneous interrupt requests be handled?

The means by which these problems are resolved vary from one computer to another.
and the approach taken is an important consideration in determining the computer’s
suitability for a given application.

When a request is received over the common interrupt-request line in Figure 4.6,
additional information is needed to identity the particular device that activated the line.
Furthermore. if two devices have activated the line at the same time. it must be possible
to break the tie and select one of the two requests for service. When the interrupt-
service routine for the selected device has been completed. the second request can be
serviced.

The information needed to determine whether a device is requesting an interrupt
is available in its status register. When a device raises an interrupt request. it sets to |
one of the bits in its status register. which we will call the IRQ bit. For example,
bits KIRQ and DIRQ in Figure 4.3 are the interrupt request bits for the keyboard and
the display. respectively. The simplest way to identify the interrupting device is to have
the interrupt-service routine poll all the 1/0 devices connected to the bus. The first device
encountered with its [RQ bit set is the device that should be serviced. An appropriate
subroutine is called to provide the requested service.

The polling scheme is easy to implement. Its main disadvantage is the time spent
interrogating the IRQ bits of all the devices that may not be requesting any service. An
alternative approach is to use vectored interrupts, which we describe next.

213

214

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

Vectored Interrupts

To reduce the time involved in the polling process. a device requesting an interrupt
may identity itself directly to the processor. Then. the processor can immediately start
executing the corresponding interrupt-service routine. The term vectored interrupts
refers to all interrupt-handling schemes based on this approach.

A device requesting an interrupt can identify itselt by sending a special code to
the processor over the bus. This enables the processor to identity individual devices
even if they share a single interrupt-request line. The code supplied by the device may
represent the starting address of the interrupt-service routine for that device. The code
length is typically in the range of 4 to 8 bits. The remainder of the address is supplied by
the processor based on the area in its memory where the addresses for interrupt-service
routines are located.

This arrangement implies that the interrupt-service routine for a given device must
always start at the same location. The programmer can gain some flexibility by storing
in this location an instruction that causes a branch to the appropriate routine. In many
computers. this is done automatically by the interrupt-handling mechanism. The loca-
tion pointed to by the interrupting device is used to store the starting address of the
interrupt-service routine. The processor reads this address. called the interrupt vector,
and loads it into the PC. The interrupt vector may also include a new value for the
processor status register.

In most computers, 1/0 devices send the interrupt-vector code over the data bus.
using the bus control signals to ensure that devices do not interfere with cach other.
When a device sends an interrupt request. the processor may not be ready to receive the
interrupt-vector code immediately. For example. it must first complete the execution of
the currentinstruction. which may require the use of the bus. There may be further delays
if interrupts happen to be disabled at the time the request is raised. The interrupting
device must wait to put data on the bus only when the processor is ready to receive
it. When the processor is ready to receive the interrupt-vector code. it activates the
interrupt-acknowledge line. INTA. The 1/0O device responds by sending\its interrupt-
vector code and turning off the INTR signal.

Interrupt Nesting

We suggested in Section 4.2.1 that interrupts should be disabled during the execu-
tion of an interrupt-service routine. to ensure that a request from one device will not
cause more than one interruption. The same arrangement is often used when several
devices are involved. in which case execution of a given interrupt-service routine. once
started. always continues to completion before the processor accepts an interruplt re-
quest from a second device. Interrupt-service routines are typically short. and the delay
they may cause is acceptable for most simple devices.

For some devices. however. a long delay in responding to an interrupt request may
lead to erroneous operation. Consider. for example. a computer that keeps track of the
time of day using a real-time clock. This is a device that sends interrupt requests 1o
the processor at regular intervals. For cach of these requests. the processor executes a
short interrupt-service routine to increment a set of counters in the memory that keep
track of time in seconds. minutes. and so on. Proper operation requires that the delay
in responding to an interrupt request from the real-time clock be small in comparison

4.2 INTERRUPTS

with the interval between two successive requests. To ensure that this requirement is
satisfied in the presence of other interrupting devices. it may be necessary to accept an
interrupt request from the clock during the execution of an interrupt-service routine for
another device.

This example suggests that I/O devices should be organized in a priority structure.
An interrupt request from a high-priority device should be accepted while the processor
is servicing another request from a lower-priority device.

A multiple-level priority organization means that during execution of an interrupt-
service routine. interrupt requests will be accepted from some devices but not from
others. depending upon the device's priority. To implement this scheme. we can assign
a priority level to the processor that can be changed under program control. The priority
level of the processor is the priority of the program that is currently being executed. The
processor aceepts interrupts only from devices that have priorities higher than its own.
Al the time the execution of an interrupt-service routine for some device is started. the
priority of the processor is raised to that of the device. This action disables interrupts
from devices at the same level of priority or lower. However. interrupt requests from
higher-priority devices will continue to be accepted.

The processor’s priority is usually encoded in a few bits of the processor status
word. It can be changed by program instructions that write into the PS. These are
privileged instructions. which can be executed only while the processor is running in
the supervisor mode. The processor is in the supervisor mode only when executing
operating system routines. It switches to the user mode before beginning to execute
application programs. Thus. a user program cannot accidentally. or intentionally. change
the priority of the processor and disrupt the system’s operation. An attempt to execute a
privileged instruction while in the user mode leads to a special type of interrupt called
a privilege exception, which we describe in Section 4.2.5.

A multiple-priority scheme can be implemented easily by using separate interrupt-
request and interrupt-acknowledge lines for cach device. as shown in Figure 4.7. Each
ol the interrupt-request lines is assigned a different priority level. Interrupt requests
received over these lines are sent to a priority arbitration circuit in the processor. A
request is accepted only if it has a higher priority level than that currently assigned to
the processor.

INTRI INTR p

Device | Device

[
‘__T INTAL INTAp

2 I Device p

Processor

Priority arbitration
cireuit

Figure 4.7 Implementation of interrupt priority using individual interrupt-request and
acknowledge lines.

215

216

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

Simultaneous Requests

Let us now consider the problem of simultaneous arrivals of interrupt requests
from two or more devices. The processor must have some means of deciding which
request to service first. Using a priority scheme such as that of Figure 4.7. the solution is
straightforward. The processor simply accepts the request having the highest priority. If
several devices share one interrupt-request line. as in Figure 4.6. some other mechanism
is needed.

Polling the status registers of the I/0 devices is the simplest such mechanism. In this
case. priority is determined by the order in which the devices are polled. When vectored
mterrupts are used. we must ensure that only one device is selected to send its interrupt
vector code. A widely used scheme is to connect the devices to form a daisy chain, as
shown in Figure 4.8«. The interrupt-request line INTR is common to all devices. The
interrupt-acknowledge line. INTA. is connected in a daisy-chain fashion. such that the
INTA signal propagates serially through the devices. When several devices raise an
interrupt request and the INTR line is activated. the processor responds by setting the
INTA tline to 1. This signal is received by device 1. Device | passes the signal on to
device 2 only il it does not require any service. If device | has a pending request for

) INTR
o ———— 1 Decvice | =1 Decvice2 fp— +-+ —=] Device n
INTA

(a) Daisy chain

INTR 1
BEEE— Device > Device I
INTAI
INTRp . .
— Device EEE— Device F——
INTAp

Priority arbitration
cireuit

(b) Arrangement of priority groups

Figure 4.8 Interrupt priority schemes.

4.2 INTERRUPIS

interrupt. it blocks the INTA signal and proceeds to put its identifving code on the data
lines. Therefore. in the daisy-chain arrangement. the device that 1s electrically closest
to the processor has the highest priority. The second device along the chain has second
highest priority. and so on.

The scheme in Figure 4.8« requires considerably fewer wires than the individual
connections in Figure 4.7. The main advantage of the scheme in Figure 4.7 is that
it allows the processor to accept interrupt requests from some devices but not from
others. depending upon their priorities. The two schemes may be combined to produce
the more general structure in Figure 4.8h. Devices are organized in groups. and each
eroup is connected at a different priority level. Within a group. devices are connected
in a daisy chain. This organization is used in many computer systems.

4.2.4 CONTROLLING DEVICE REQUESTS

Until now. we have assumed that an [/0 device interface generates an interrupt request
whenever it is ready for an I/O transfer. for example whenever the SIN flag in Figure 4.3
is equal to 1. Itis important to ensure that interrupt requests are generated only by those
1/0 devices that are being used by a given program. Idle devices must not be allowed to
generale interrupt requests. even though they may be ready to participate in /O transfer
operations. Hence. we need a mechanism in the interface circuits of individual devices
to control whether a device is allowed to generate an interrupt request.

The control needed is usually provided in the form of an interrupt-enable bit in the
device's interface circuit. The keyboard interrupt-enable. KEN. and display interrupt-
enable. DEN. flags in register CONTROL in Figure 4.3 perform this function. If ei-

ther of these flags is set. the interface circuit generates an interrupt request whenever

the corresponding status flag in register STATUS is set. At the same time. the in-
terface circuit sets bit KIRQ or DIRQ to indicate that the keyboard or display unit.
respectively, is requesting an interrupt. If an interrupt-enable bit is equal to 0, the
interface circuit will not generate an interrupt request. regardless of the state of the
status flag.

To summarize. there are two independent mechanisms for controlling interrupt
requests. At the device end. an interrupt-enable bit in a control register determines
whether the device is allowed to generate an interrupt request. At the processor end.
cither an interrupt enable bit in the PS register or a priority structure determines whether
a given interrupt request will be accepted.

Consider a processor that uses the vectored interrupt scheme. where the starting address
of the interrupt-service routine is stored at memory location INTVEC. Interrupts are
enabled by setting to 1 an interrupt-enable bit. IE. in the processor status word. which
we assume is bit 9. A keyboard and a display unit connected to this processor have the
status. control, and data registers shown in Figure 4.3,

Assume that at some point in a program called Main we wish to read an input
line from the keyboard and store the characters in successive byte locations in the

217

Example 4.3

218

CHAPTER 4 « INPUT/OUTPUT ORGANIZATION

memory. starting at location LINE. To perform this operation using interrupts. we need

to initialize the interrupt process. This may be accomplished as follows:

. Load the starting address of the interrupt-service routine in location INTVEC.,

2. Load the address LINE in a memory location PNTR. The interrupt-service routine
will use this location as a pointer to store the input characters in the memory.
Enable keyboard interrupts by setting bit 2 in register CONTROL to .

4. Enable interrupts in the processor by setting to | the IE bit in the processor status

register, PS.

o

Once this initialization is completed. typing a character on the keyboard will cause an
interrupt request to be generated by the keyboard interface. The program being executed
at that time will be interrupted and the interrupt-service routine will be executed. This
routine has to perform the following tasks:

I. Read the input character from the keyboard input data register. This will cause the
interface circuit to remove its interrupt request.

2. Store the character in the memory location pointed to by PNTR. and increment
PNTR.

3. Whenthe end of the line is reached. disable keyboard interrupts and inform program
Main.

4. Return from interrupt.

The instructions needed to perform these tasks are shown in Figure 4.9. When,
the end of the input line is detected. the interrupt-service routine clears the KEN bit
in register CONTROL as no further input is expected. It also sets to | the variable
EOL (End Of Line). This variable is initially set to 0. We assume that it is checked
periodically by program Main to determine when the input line is ready for processing.

Input/output operations in a computer system are usually much more involved than
this simple example suggests. As we will describe in Section 4.2.5. the operating system
of the computer performs these operations on behalf of user programs.

4.2.5 EXCEPTIONS

An interruptis aneventthat causes the execution of one program to be suspended and the
exccution ofanother program to begin. So far. we have dealt only with interrupts caused
by requests received during 1/0O data transters. However. the interrupt mechanism is
used i a number of other situations,

The term exceprion is often used to refer to any event that causes an interruption.
Hence. 1/0 interrupts are one example of an exception. We now describe a few other
kinds of exceptions.

Recovery from Errors
Computers use a varicty of techniques to ensure that all hardware components are
operating properly. For example. many computers include an error-checking code in

4.2 INTERRUPTS

Main Program

Move #LINE.PNTR Initialize butfer pointer.

Clear ILOL Clear end-of-line indicator.

BirSet #2. CONTROL Enable kevhoard interrpts.
BitSet #9.1°S Set interrupt-enable bit in the IS,

Interrupt-service routine

READ NMoveMudtiple RO R (SD) Save registers RO and R1T on stack.
Move PNTR.RRO Load address pointer.
MoveDByte DATAIN.R1 Get input character and
NMoveDByte RL.(RO)+ store it i metory,
Move ROPNTR Update pointer.
CompareByte #S0D.R1 Check if Carviage Return.
Branch#0 RTRN
NMove #1.EOL Indicate e of line.
Bit Clear #2 . CONTROL Disable kevboard mterrapts.
RTRN NMoveMultiple (SP)+.R0O R1 Restore registers RO and R1.

Retwrn-from-interrupt

Figure 4.9 Using interrupts to read a line of characters from a keyboard via the registers in
Figure 4.3.

the main memory. which allows detection of errors in the stored data. If an error occurs.
the control hardware detects it and informs the processor by raising an interrupt.

The processor may also interrupt a program it it detects an error or an unusual
condition while executing the instructions of this program. For example. the OP-code
field of an instruction may not correspond to any legal instruction. or an arithmetic
instruction may attempt a division by zero.

When exception processing is initiated as a result of such errors. the processor
proceeds in exactly the same manner as in the case of an /O interrupt request. It
suspends the program being executed and starts an exception-service routine. This
routine takes appropriate action to recover from the error. i’ possible. or to inform
the user about it. Recall that in the case of an /O interrupt. the processor completes
execution of the instruction in progress before accepting the interrupt. However. when
an interrupt is caused by an error. execution of the interrupted instruction cannot usually
be completed. and the processor begins exception processing immediately.

Debugging

Another important type of exception is used as an aid in debugging programs. Sys-
tem software usually includes a program called a debugger, which helps the programmer
find errors in a program. The debugger uses exceptions to provide two important facil-
ities called trace and breakpoints.

219

220

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

When a processoris operating in the rrace mode. an exception occurs after execution
of every instruction. using the debugging program as the exception-service routine.
The debugging program enables the user to examine the contents of registers. memory
locations. and so on. On return from the debugging program. the next instruction in the
program being debugged is executed. then the debugging program is activated again.
The trace exception is disabled during the execution of the debugging program.

Breakpoints provide a similar facility. except that the program being debugged is
interrupted only at specific points selected by the user. An instruction called Trap or
Software-interrupt is usually provided for this purpose. Execution of this instruction
results in exactly the same actions as when a hardware interrupt request is received.
While debugging a program. the user may wish to interrupt program exccution after
instruction /. The debugging routine saves instruction i + 1 and replaces it with a
software interrupt instruction. When the program is executed and reaches that point. it
is interrupted and the debugging routine is activated. This gives the user a chance 1o
examine memory and register contents. When the user is ready to continue executing
the program being debugged. the debugging routine restores the saved instruction that
was at location 7 + I and executes a Return-from-interrupt instruction.

Privilege Exception

To protect the operating system of a computer from being corrupted by user pro-
grams. certain instructions can be executed only while the processor is in the supervisor
mode. These are called privileged instructions. For example. when the processor is run-
ning in the user mode. it will not execute an instruction that changes the priority level
of the processor or that enables a user program (o access areas in the computer memory
that have been allocated to other users. An attempt to execute such an instruction will
produce a privilege exception. causing the processor to switch to the supervisor mode
and begin executing an appropriate routine in the operating system.

©'4.2.6 USE OF INTERRUPTS IN OPERATING SYSTEMS

The operating system (OS) is responsible for coordinating all activities within a com-
puter. It makes extensive use of interrupts to perform I/O operations and communicate
with and control the execution of user programs. The interrupt mechanism enables the
operating system to assign priorities. switch from one user program to another, imple-
ment security and protection features. and coordinate 1/0 activities. We will discuss
some of these aspects briefly. A discussion of operating systems is outside the scope of
this book. Our objective here is to illustrate how interrupts are used.

The operating system incorporates the interrupt-service routines for all devices
connected to a computer. Application programs do not perform 1/O operations them-
selves. When an application program needs an input or an output operation. it points to
the data to be transferred and asks the OS 1o perform the operation. The OS suspends
the execution of that program temporarily and performs the requested /O operation.
When the operation is completed. the OS transfers control back to the application pro-
gram. The OS and the application program pass control back and forth using software
interrupts.

4.2 INTERRUPTS

An operating system provides a variety of services to application programs. To
facilitate the implementation of these services, most processors have several different
software interrupt instructions, each with its own interrupt vector. They can be used to
call different parts of the OS, depending on the service being requested. Alternatively, a
processor may have only one software interrupt instruction, with an immediate operand
that can be used to specify the desired service.

In a computer that has both a supervisor and a user mode, the processor switches
its operation to supervisor mode at the time it accepts an interrupt request. It does so
by setting a bit in the processor status register after saving the old contents of that
register on the stack. Thus, when an application program calls the OS by a software
interrupt instruction, the processor automatically switches to supervisor mode, giv-
ing the OS complete access to the computer’s resources. When the OS executes a
Return-from-interrupt instruction, the processor status word belonging to the applica-
tion program is restored from the stack. As a result, the processor switches back to the
user mode.

To illustrate the interaction between application programs and the operating sys-
tem, let us consider an example that involves multitasking. Multitasking is a mode of
operation in which a processor executes several user programs at the same time. A
common OS technique that makes this possible is called time slicing. With this tech-
nique, each program runs for a short period called a time slice, 7. then another program
runs for its time slice, and so on. The period 7 is determined by a continuously running
hardware clock, which generates an interrupt every t seconds.

Figure 4.10 describes the routines needed to implement some of the essential func-
tions in a multitasking environment. At the time the operating system is started, an
initialization routine, called OSINIT in the figure, is executed. Among other things,
this routine loads the appropriate values in the interrupt vector locations in the memory.
These values are the starting addresses of the interrupt service routines for the corre-
sponding interrupts. For example, OSINIT loads the starting address of a routine called
SCHEDULER in the interrupt vector corresponding to the timer interrupt. Hence, at
the end of each time slice, the timer interrupt causes this routine to be executed.

A program, together with any information that describes its current state of execu-
tion, is regarded by the OS as an entity called a process. A process can be in one of three
states: Running, Runnable, or Blocked. The Running state means that the program is
currently being executed. The process is Runnable if the program is ready for execution
but is waiting to be selected by the scheduler. The third state, Blocked, means that the
program is not ready to resume execution for some reason. For example, it may be
waiting for completion of an I/0 operation that it requested earlier.

Assume that program A is in the Running state during a given time slice. At the
end of that time slice, the timer interrupts the execution of this program and starts the
execution of SCHEDULER. This is an operating system routine whose function is to
determine which user program should run in the next time slice. It starts by saving all the
information that will be needed later when execution of program A is resumed.
The information saved, which is called the program state, includes register contents,
the program counter, and the processor status word. Registers must be saved because
they may contain intermediate results for any computation in progress at the time of
interruption. The program counter points to the location where execution is to resume

221

222 CHAPTER 4 « INPUT/OUTPUT ORGANIZATION

OSINIT Setanterrupt veetors:
Time-slice clock — SCHEDULER
Software interrupt -- OSSERVICES
Nevbhoard interrupts — I0Data

OSSERVICES Examine stack to determine reguested operation.
Call appropriate routine.

SCHEDULER Save program state.
Select a mumable process.
Restore saved context of new process.
Puslu new values for PS and PC on stack.
Return from interrupt .,

(a) OS initialization, services, and scheduler

TIOINTT Set process status to Blocked.
[nitialize memory butler address pointer aud connter.
Call deviee driver to initialize deviee
and enable interrupts in rhe device interface,
Return from subroutine.

TODATA Poll devices to determine source of interrupt.
Call appropriate driver,
[f END = 1. then set process status to Runnable.
Retwrn from interrupt.

(b) 1/O routines

KBDINTT Enable interrupts
Return from subroutine.

NBDDATA Check deviee statns.
If ready. then transfer charvacter.
If character = CR. then {set END = 1: Disable interrupts)
clse set END = 0.
Retirn from subrontine.

(c) Keyboard driver

Figure 4.10 A few operating system routines.

4.2 INTERRUPTS

later. The processor status word is needed because it contains the condition code flags
and other information such as priority level.

Then, SCHEDULER selects for execution some other program. B, that was sus-
pended earlier and is in the Runnable state. It restores all information saved at the
time program B was suspended, including the contents of PS and PC. and executes
a Return-from-interrupt instruction. As a result, program B resumes execution for 7
seconds, at the end of which the timer clock raises an interrupt again, and a context
switch to another runnable process takes place.

Suppose that program A needs to read an input line from the keyboard. Instead of
performing the operation itself, it requests 1/0 service from the operating system. It
uses the stack or the processor registers to pass information to the OS describing the
required operation, the I/O device, and the address of a buffer in the program data area
where the line should be placed. Then it executes a software interrupt instruction. The
interrupt vector for this instruction points to the OSSERVICES routine in Figure 4.10a.
This routine examines the information on the stack and initiates the requested operation
by calling an appropriate OS routine. In our example, it calls IOINIT in Figure 4.10b,
which is a routine responsible for starting 1/O operations.

While an I/O operation is in progress, the program that requested it cannot continue
execution. Hence, the IOINIT routine sets the process associated with program A
into the Blocked state, indicating to the scheduler that the program cannot resume
execution at this time. The IOINIT routine carries out any preparations needed for the
1/O operation, such as initializing address pointers and byte count, then calls a routine
that performs the I/O transfers.

It is common practice in operating system design to encapsulate all software per-
taining to a particular device into a self-contained module called the device driver.
Such a module can be easily added to or deleted from the OS. We have assumed that
the device driver for the keyboard consists of two routines, KBDINIT and KBDDATA,
as shown in Figure 4.10¢. The IOINIT routine calls KBDINIT. which performs any
initialization operations needed by the device or its interface circuit. KBDINIT also
enables interrupts in the interface circuit by setting the appropriate bit in its control
register, and then it returns to IOINIT, which returns to OSSERVICES. The keyboard
is now ready to participate in a data transfer operation. It will generate an interrupt
request whenever a key is pressed.

Following the return to OSSERVICES. the SCHEDULER routine selects another
user program to run. Of course. the scheduler will not select program A, because that
program is now in the Blocked state. The Return-from-interrupt instruction that causes
the selected user program to begin execution will also enable interrupts in the processor
by loading new contents into the processor status register. Thus. an interrupt request
generated by the keyboard’s interface will be accepted. The interrupt vector for this in-
terrupt points to an OS routine called IODATA. Because there could be several devices
connected to the same interrupt request line, IODATA begins by polling these devices
to determine the one requesting service. Then. it calls the appropriate device driver to
service the request. In our example, the driver called will be KBDDATA, which will
transter one character of data. If the character is a Carriage Return. it will also set to |
a flag called END, to inform IODATA that the requested 1/0 operation has been com-
pleted. At this point, the [ODATA routine changes the state of process A from Blocked
to Runnable, so that the scheduler may select it for execution in some future time slice.

223

224

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

4.3 PROCESSOR EXAMPLES

We have discussed the organization of interrupts in general in the previous section. Com-
mercial processors provide many of the features and control mechanisms described.
but not necessarily all of them. For example. vectored interrupts may be supported to
enable the processor to branch quickly to the interrupt-service routine for a particular
device. Alternatively. the task of identifying the device and determining the starting
address of the appropriate interrupt-service routine may be left for implementation in
software using polling. In the following sections we describe the interrupt-handling
mechanisms of the three processors described in Chapter 3.

4.3.1 ARM INTERRUPT STRUCTURE

The ARM processor has a simple yet powertul exception-handling mechanism. There
are five sources for exceptions. only two of which are external interrupt-request lines.
IRQ and FIQ (Fast Interrupt Request). There is one software interrupt instruction.
SWI, and two exceptions that may be caused by abnormal conditions encountered
during program execution. These exceptions are an external abort following a bus error
and an attempt to execute an undefined instruction. Exceptions are handled according
to the following priority structure:

. Reset (highest priority)

2. Data abort

3. FIQ

4. 1RQ

5. Prefetch abort

6. Undefined instruction (fowest priority)

The Reset condition is included in this structure because it must override all other
conditions to bring the processor to a known starting condition. Also note that there are
two abort conditions. Data Abort arises from an error in reading or writing data, and
Prefetch Abort arises from an error when prefetching instructions from the memory.

Figure 3.1 shows the status register of the ARM processor, CPSR (Current Program
Status Register). The low-order byte of this register is shown in Figure 4.11. There are
two interrupt mask bits. one each for IRQ and FIQ. When either of these bits is equal
to 1. the corresponding interrupt is disabled. The register also contains five mode bits.

7 6 5 4 3

(18]
<

1 F M4 | M3 | M2 | Ml MO

Figure 4.11 Llow-order byte of the ARM processor
status register.

4.3 PROCESSOR EXAMPLES

M, 4. which indicate the mode in which the processor is running. There are six modes
— a User mode and five privileged modes, one for each of the five types of exception.

When the processor switches to a different mode. it also switches some of the
registers accessible to the program. The register set that is accessible in each mode is
shown in Figure 4.12. Registers RO to R7. R15 (the PC). and CPSR are accessible in
all modes. In all privileged modes. except FIQ. registers R8 to R12 are also accessible.

General-purpose registers and program counter

User FIQ IRQ Supervisor Abort Undefined
RO RO RO RO RO RO

R1 R1 R1 R1 R1 R

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R _fiq RY¥ R8 RE& RS
RY RY_fig RY RY RY RY
R10 R10_tiq R0 R10O R10 R10
RII RI1_fig R11 R11 R11 R1I
R12 R12_fiq R12 R12 R12 RI12
R13 R13_fig R13_iry R13-sve R13_aht R13 _und
R4 RI14_fiq R14_irq RI14_sve R14_abt RI14_und
RIS RIS R15 R15 R15 RIS

Processor status register

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_tig SPSR_irq SPSR_sve SPSR bt SPSR_und

Figure 4.12 Accessible registers in different modes of the ARM processor.

225

226

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

Table 4.1 Interrupt vector addresses for ARM processor

Address

thex) Exception Mede entered
0 Reset Supervisor

4 Undefined instruction Undefined
8 Software interrupt Supervisor

C Abort during prefetch Abort

10 Abort during data Abort

14 Reserved

18 IRQ IRQ

1C FIQ FlQ

However. two new registers replace R13 and R[4 in each of the modes: IRQ. Supervisor.
Abort. and Undefined. In the case of FIQ. registers R8 to R14 are replaced by RS i
to RI4.fig. The registers that replace user mode registers are called hanked registers.
They can be used by interrupt-service routines without the need to save the contents of
their User mode counterparts. For example. when an instruction refers to R13 while the
processor is in the IRQ mode. the register accessed is R13 irg rather than User mode
register R13. Also. each mode other than the User mode has a dedicated register called
Saved Processor Status Register (SPSR sve. SPRS irq. etc.) for saving the contents of
CPSR at the time the interruption occurs.

Exception-handling routines start at fixed locations in memory. as shown in
Table 4.1. Following an interrupt. the processor enters the mode indicated and be-
gins execution at the corresponding vector address. Since there is only space for one
instruction at all but the Tast address (FIQ). these locations should contain branch in-
structions to the service routines. In the case of FIQ. the service routine does not need
to use a branch instruction and may continue from the starting location shown.

When the processor accepts an interrupt. it takes the following actions:

I Tt saves the return address of the interrupted program in register 14 of the cor-
responding mode. For example. in the case of FIQ. it saves the return address
in RI4.fig. The exact value saved depends on the type of exception. as will be
explained shortly.

|9

It saves the contents of the processor status register. CPSR. in the corresponding
SPSR.

3. It changes the mode bits in CPSR according to the type of interrupt. as shown in
the last column of Table 4.1. For FIQ and IRQ. it also sets the corresponding mask
bit in CPSR to 1. thus disabling further interrupts on the same line.

4. Itbranchesto the interrupt-service routine starting at the appropriate vector address.

4.3 PROCESSOR EXAMPLES

The ARM processor uses a pipelined structure. As we will explain in Chapter 8, this
means that an instruction is fetched before the execution of the preceding instruction
is completed. Suppose that the processor fetches instruction I; at some address A. The
processor increments the contents of the PC to A+4 and begins executing instruction
I,. Before completing execution of that instruction, it fetches instruction I, at address
A+-4, then it increments the PC to A+8. Let us now assume that at the end of execution
of instruction I; the processor detects that an IRQ interrupt has been received, and it
begins to perform the actions described above. It copies the contents of the PC, which
are now equal to A+8, into register R14_irq. Instruction I,, which has been fetched
but not yet executed, is discarded. This is the instruction to which the interrupt-service
routine must return.

In the scenario described above, the address saved in R14_irq is A+8, but the return
address of the interrupt-service routine must be A+4. This means that the interrupt-
service routine must subtract 4 from R14_irq before using its contents as the return
address. That is, the return instruction must load the value [R14 irq] —4 into the PC.
It must also copy the contents of SPSR_irq into CPSR. The latter action restores the
processor to its operating mode before the interruption occurred. and it clears the
interrupt mask so that interrupts are once again enabled. The required actions are
carried out by the instruction:

SUBS PC.Rl4.irq, #4

This instruction subtracts 4 from R14_irq and stores the result into R15. The suffix S
normally means set condition codes. When the target register of the instruction is the
PC, the S suffix causes the processor to copy the contents of SPSR_irq into CPSR, thus
completing the actions required to return to the interrupted program.

The amount that needs to be subtracted from R14 to obtain the correct return
address depends on the details of instruction execution in the processor pipeline. Hence,
it differs from one type of exception to another. For example, in the case of a software
interrupt triggered by the SWI instruction, the value saved in R14_svc is the correct
return address. Hence, return from an SW1 service routine could be accomplished using
the instruction

MOVS PC,R14_svc

Table 4.2 gives the correct value for the return address and the instruction that can
be used to return to the interrupted program for each of the exceptions in Table 4.1.
Note that for an abort interrupt, which may be caused by a bus error, the desired return
address is shown as the address of the instruction that caused the error. It is assumed
that the controlling software may wish to retry this instruction.

When running in a privileged mode, two special MOV instructions called MSR
and MRS transfer data to or from either the current or the saved PSR. For example,

MRS RO,CPSR
copies the contents of CPSR into RO. Similarly,

MSR SPSR,RO

227

228

CHAPTER 4 « INPUT/OUTPUT ORGANIZATION

Table 4.2 Address correction during return from exception

Desired

Exception Saved address* return address Return instruction
Undefined instruction PC+4 PC+4 MOVS PC.RI4_und
Software interrupt PC-+4 PC+4 MOVS PC.RI4.sve
Prefetch Abort PC+4 pPC SUBS PC.Ri4.abt.#d4
Data Abort PC+8 pPC SUBS PC.RI4.abt#8
IRQ PC+4 PC SUBS PC.R14.irg.#4
FIQ PC+4 PC SUBS PC.RI4._fig.#4

PC is the address of the instruction that caused the exception. For IRQ and FIQ. it is the address of the
first instruction not executed because of the interrupt

loads SPSR from register RO. These instructions are useful when the operating system
needs to enable or disable interrupts. as we will see in Example 4.4.

Stacks and Nesting

The ARM interrupt mechanism stores the return address in a register and does not
automatically implement a stacking mechanism to allow subroutine or interrupt nesting.
The facilities provided have been carefully thought out to allow the programmer to
implement such features when needed and to avoid unnecessary overhead when they
are not needed. First. let us observe that nesting is possible when it is caused by
different sources. For example. the IRQ interrupt-service routine. whose return address
is in R14.irq. may be interrupted by the higher priority FIQ interrupt. The new return
address will be stored in R14_fig.

To allow nesting of interrupts from the same source. the contents of the correspond-
ing R14 and SPSR must be saved on a stack. This can be readily done by program
instructions using R13 as the stack pointer. For this reason. dedicated registers R13
and R14 are available in every mode. The interrupt-service routine can save R14 and
SPSR on its private stack. then clear the interrupt mask in CPSR. It may also save
other registers on the stack to create additional working space. as needed. For FIQ.
which is intended as a fast interrupt. some dedicated register space is available. R8 fig
to R13_fiq. without the need to save registers on the stack.

We pointed out in Chapter 3 that the LDM and STM instructions. which transfer
multiple words. are convenient for handling stack operations. For example. using R13
as a stack pointer. a subroutine or an interrupt-service routine may save some registers
and the return address as follows:

STMFD RI3!{RO.R1.R2.R[4}

Similarly, an LDMFD instruction can be used to restore the saved values. In the case of

4.3 PROCESSOR EXAMPLES

an SW or mstruction prefetch exception. the value restored to R14 is also the correct
return address. Hence. it can be restored directly to R15. thus effecting a return to the
interrupted program. as follows:

LDMFD RI3'{RO.RI.R2.RI5}

The =" symbol at the end of the instruction has the same effect as the S suftix in the
case of the SUBS instruction used earlier. It causes the processor to copy SPSR into
CSPR at the same time it loads R15. Note that LDM cannot be used to return from an
IRQ or FIQ interrupt because the contents of R14 must be corrected first. as shown in
Table 4.2

An example of the use of interrupts is given in Figure 4.13, which shows the program
in Figure 4.9 rewritten for ARM. We have assumed that the keyboard is connected
to interrupt line IRQ and that the corresponding interrupt vector location contains a
branch instruction to READ. We have also assumed that at the time this code segment
is entered the memory bufter address. LINE. has been loaded into location PNTR.
Locations PNTR and EOL are assumed to be sufticiently close in the address space that
they can be reached using the Relative addressing mode. The Main program enables
interrupts in both the keyboard interface and the processor by setting the KEN flag
in the keyboard’s CONTROL register and clearing the I mask in the processor status
register. The T mask. bit 7. is cleared by loading the value $50 into CPSR using the
MSR instruction.

In the interrupt-service routine, we use the LDM and STM instructions to save
and restore registers and the SUBS instruction to return to the iterrupted program.
The address of the keyboard’s DATAIN register in Figure 4.3 is loaded in a processor
register using the ADR instruction described in Section 3.4.1. We have assumed that
the address of the control register, CONTROL. is equal to DATAIN+3.

4.3.2 68000 INTERRUPT STRUCTURE

The 68000 has eight interrupt priority levels. The priority at which the processor is
running at any given time is encoded in three bits of the processor status word. as
shown in Figure 4.14. with level 0 being the lowest priority. /O devices are connected
to the 68000 using an arrangement similar to that in Figure 4.85. in which interrupt
requests are assigned priorities in the range 1 through 7. A request is accepted only
if its priority is higher than that of the processor. with one exception: An interrupt
request at level 7 is always accepted. This is an edge-triggered nonmaskable interrupt.
When the processor accepts an interrupt request, the priority level indicated in the PS
register s automatically raised to that of the request before the interrupt-service routine
is executed. Thus. requests of equal or lower priority are disabled. except for level-7
interrupts. which are always enabled.

The processor automatically saves the contents of the program counter and the
processor status word at the time of interruption. The PC is pushed onto the processor

229

Example 4.4

CHAPTER 4

o INPUT/OUTPUT ORGANIZATION

Main program

MOV
STR
ADR
LDRDB
ORR
STRD
MOV
AR

RO.#£0
ROLEOL
RI.DATAIN
RO.R1.#3!
RORO.# 1
RORT.#3
RO#850
CPSR.RO

IRQ Interrupt-service routine

READ STAFEFD
ADR
LDRDB
LDR
STRB
STR
CNMPD
LDMNNEFD
SUBNES
LDREB
AND
STRD
MOV
STR
LDMNFED
SUBS

RIBLARO-R2.R1 Lirg}
RLDATAIN

ROJRT,

R2.PNTR

ROJR2].# 1
R2.PNTR

RO.#840D
RIBL{RO-R2.RT Lirg}
PCRILirg.#1
RO.RT.#3
RO.ROASEFD
RORT.#3:

RO.#1

RO.EOL
RI3LIRO-R2.R1 Y
PCRTAdrg.#4

Clear EOL flag.

Load address of register DATAIN.

Get contents of CONTROL register.

Set bit KEN in register CONTROL
to cnable kevboard interrupts,

Enable TRQ interrupts in processor
and switch to user mode.

Save RO. R and R1Hirg on the stack.
Load address of register DATAIN.
Get input character.
Load pointer value.
Store character and increment pointer.
Update pointer value in the memory.
Check iff Carriage Return.
If not. restore registers

and return.
Otherwise. get CONTROL register,
Clear bhit KEN

to disable kevhoard interrupts.

Set KOL flao.

Restore registers

and retirn.

Figure 4.13 An ARM inferrupt-service routine to read an input line from a keyboard, based on

Figure 4.9.
15 12 10 8 43 2 10
| TI‘] S | x| N z] v] ¢
J R
Trace -
Condition
Supervisor lnlgn‘ppt Codes
Priority

Figure 4.14 Processor status register in the 68000 processor.

4.3 PROCESSOR EXAMPLES

stack followed by the PS. using register A7 as the stack pointer. A Return-from-
interrupt instruction. called Return-from-exception (RTE) in the 68000 assembly lan-
guage. pops the top element of the stack into the PS and pops the next element into
the PC. As shown in Figure 4.14. the PS register contains a Supervisor bit. S. and a
Trace bit. T. The S bit determines whether the processor is running in the Supervisor
mode (S = 1) or User mode (S = 0). The T bit enables a special type of interrupt
called a trace exception. as described in Section 4.2.4. This information is saved au-
tomatically at the time an interrupt is accepted and restored at the end of interrupt
servicing. Any additional information to be saved. such as the contents of general-
purpose registers. must be saved and restored explicitly inside the interrupt-service
routine.

The 68000 processor uses vectored interrupts. When it accepts an interrupt request.
it obtains the starting address of the interrupt-service routine from an interrupt vector
stored in the main memory. There are 256 interrupt vectors. numbered 0 through 255.
Lach vector consists of 32 bits that constitute the required starting address. When a
device requests an interrupt. it may point to the vector that should be used by sending an
8-bit vector number to the processor in response to the interrupt-acknowledge signal.
As an alternative. the 68000 also provides an autovector facility. Instead of sending
a vector number. the device can activate a special bus control line to indicate that
1t wishes to use the autovector facility. In this case. the processor chooses one of
seven vectors provided for this purpose. based on the priority level of the interrupt
request.

An example of the use of interrupts in the 68000 is shown in Figure 4.15. This is the
program given in Figure 4.9 rewritten for the 68000. We have assumed that the key-
board interface uses the autovector facility and generates interrupt requests at level 2.
Hence. to enable interrupts. the processor priority must be set at a level less than 2.
When the bit pattern $100 is Joaded into register PS. it sets the processor’s priority
to 1.

4.3.3 PENTIUM INTERRUPT STRUCTURE

The TA-32 architecture. of which the Pentium processors are examples. uses two
interrupt-request fnes. a nonmaskable interrupt (NMI) and a maskable interrupt. also
called user interrupt request. INTR. Interrupt requests on NMI are always accepted by
the processor. Requests on INTR are accepted only if they have a higher privilege level
than the program currently executing. as we will explain shortly. INTR interrupts can
also be enabled or disabled by setting an interrupt-enable bit in the processor status
register.

In addition to external interrupts. there are many events that arise during program
execution that can cause an exception. These include invalid opcodes. division errors.
overflow. and many others. They also include trace and breakpoint interrupts.

231

Example 4.5

CHAPTER 4 -

INPUT/OUTPUT ORGANIZATION

Main program

MOVELL

CLR
ORLDB
MOVE

#LINE.PNTR
EOL

#1. CONTROL
#%$100.SR

Interrupt-service routine

Iuitialize budfer pointer.
C'lear end-of-line indicator.
Set bhit KEN.

Set processor priority to 1.

READ MNOVEM.L A0/DO.-(AT) Save registers A0 DO on stack.
MOVEAL PNTR.AO Load address pointer.
MOVE.DB DATAIN.DO Get input character.
AMOVE.DB DO.(AO)+ Store it in memory butfer.
MOVELL AO.PNTR Update pointer.

CMPLDB #%$0D.D0 Check if Carriage Retaren.
BNE RTRN

ANOVE #1.EOL Indicate end of Hne.
ANDLB #SFB.CONTROL Clear bit KEN.

RTRN MOVEML (A7T)+.A0/D0 Restore vegisters DO AO.
RTE

Figure 4.15 A 68000 interrupt-service routine to read an input line from a keyboard,

The occurrence of any of these events causes the processor to branch to an interrupt-
service routine. Each interrupt or exception is assigned a vector number. In the case of
INTR. the vector number is sent by the I/O device over the bus when the interrupt request
is acknowledged. For all other exceptions. the vector number is preassigned. Based on
the vector number. the processor determines the starting address of the interrupt-service

based on Figure 4.9.

10PL IF TF

Figure 4.16 Part of the Pentium’s processor status
register.

routine from a table called the Interrupt Descriptor Table.

A companion chip to the Pentium processor is called the Advanced Programmable
Interrupt Controller (APIC). Various /O devices are connected to the processor through
this chip. The interrupt controller implements a priority structure among different de-

vices and sends an appropriate vector number to the processor for each device.

4.3 PROCESSOR EXAMPLES

The processor status register. which is called EFLAGS in Intel literature, is shown
in Figure 3.37. Figure 4.16 shows bits 8 to 15 of this register. which contain the
Interrupt Enable Flag (IF). the Trap flag (TF) and the /O Privilege Level (IOPL).
When IF = 1. INTR interrupts are accepted. The Trap flag enables trace interrupts after
every instruction.

The Pentium processor has a sophisticated privilege structure. whereby different
parts of the operating system execute at one of four levels of privilege. A different
segment in the processor address space is used for cach level. Switching from one level
to another involves a number of checks implemented in a mechanism called a gate.
This enables a highly secure OS to be constructed. It is also possible for the processor
to run in a simple mode in which no privileges are implemented and all programs run
in the same segment. We will only discuss this simple case here.

When an interrupt request is received or when an exception occurs. the processor
takes the following actions:

. It pushes the processor status register. the current segment register (CS). and the
instruction pointer (EIP) onto the processor stack pointed to by the processor stack
pointer. ESP.

2. In the case of an exception resulting from an abnormal exccution condition, it
pushes a code on the stack describing the cause of the exception.

3. Tt clears the corresponding interrupt-enable flag. if appropriate. so that further
interrupts from the same source are disabled.

4. It fetches the starting address of the interrupt-service routine from the Interrupt
Descriptor Table based on the vector number of the interrupt and loads this value
into EIP. then resumes execution.

Afler servicing the interrupt request. for example, by transferring input or output
data. the interrupt-service routine returns to the interrupted program using a return from
interrupt instruction, IRET. This instruction pops EIP. CS. and the processor status
register from the stack into the corresponding registers. thus restoring the processor
state.

As in the case of subroutines. the interrupt-service routine may create temporary
work space by saving registers or using the stack frame for local variables. It must
restore any saved registers and ensure that the stack poimter ESP is pointing to the
return address betore executing the IRET instruction.

The example in Figure 4.9 rewritten for the Pentium is shown in Figure 4.17. We have
assumed that the keyboard sends an interrupt request with vector number 32 and that
the corresponding entry in the Interrupt Descriptor Table has been loaded with the
starting address READ of the interrupt-service routine. Interrupts are enabled in the
processor using the STI instruction. which sets to | the 1F flag in the processor status
register.

233

Example 4.6

234

CHAPTER 4 « INPUT/OUTPUT ORGANIZATION

Main program

MOV 20Ol

NMON Bl
OR CONTROL.BL Set KEN to enable kevboard interrupts.
ST Set interrupt lag in processor register.

Interrupt-service routine

READ PUSH AN
PUSH #DBXN

Save register AN on stack,
Save register EBN on stack.

AOV FANDPNTR Load address pointer,
MOV BL.DATAIN Ciet input character.
MOV EANBL Store character,
INC ODWORD PTR EAXND Tucrement PNTR.
NP BLL.ODH Check if character is CR.
JNE RTRN
NOV B
NOR CONTROL.BL Clear bit KEN.
MOV Ol Set EOL flag.

RTRN PODP DI SN Restore register E3X.
ror AN Restore register AN,
IRET

Figure 4.17 An interrupt-servicing routine to read one line from a keyboard using
interrupts on IA-32 processors.

4.4 DIRECT MEMORY ACCESS

The discussion in the previous sections concentrates on data transfer between the pro-
cessor and 170 devices. Data are transferred by executing instructions such as

Move DATAIN.RO

An instruction to transler input or output data is exccuted only after the processor
determines that the /O device is ready. To do this, the processor either polls a status
flag in the device interface or waits for the device to send an interrupt request. In either
case. considerable overhead is incurred. because several program instructions must be
executed for each data word transterred. In addition 1o polling the status register of the
device. instructions are needed for incrementing the memory address and keeping track
of the word count. When interrupts are used. there is the additional overhead associated
with saving and restoring the program counter and other state information.

To transfer large blocks of data at high speed. an alternative approach is used.
A special control unit may be provided to allow transfer of a block of data directly

4.4 DIRECT MEMORY ACCESS

between an external device and the main memory. without continuous intervention by
the processor. This approach is called direct memory access. or DMA.

DMA (ransfers are performed by a control circuit that is part of the /O device
interface. We refer to this circuit as a DMA controller. The DMA controller performs
the functions that would normally be carried out by the processor when accessing the
main memory. For each word transferred. it provides the memory address and all the
bus signals that control data transter. Since it has to transfer blocks of data. the DMA

controller must increment the memory address for successive words and Kkeep track of

the number of transfers.,

Although « DMA controller can transter data without intervention by the processor.
its operation must be under the control of a program executed by the processor. To initi-
ate the transter of a block of words. the processor sends the starting address. the number
of words in the block, and the direction of the transter. On receiving this information.
the DMA controller proceeds to perform the requested operation. When the entire block
has been transferred. the controller informs the processor by raising an interrupt signal.

Whilec a DMA transferis taking place. the program that requested the transfer cannot
continuc. and the processor can be used to execute another program. After the DMA
transfer is completed. the processor can return to the program that requested the transfer.

1/0y operations are always performed by the operating system of the computer
in response o a request from an application program. The OS is also responsible for
suspending the execution of one program and starting another. Thus. foran 1/0) operation
involving DMA. the OS puts the program that requested the transfer in the Blocked state
(see Section 4.2.6). initiates the DMA operation. and starts the execution of another
program. When the transfer is completed. the DMA controller informs the processor
by sending an interrupt request. In response. the OS puts the suspended program in the
Runnable state so that it can be selected by the scheduler to continue execution.

Figure 4. 18 shows an example of the DMA controller registers that are accessed
by the processor to initiate transfer operations. Two registers are used for storing the

31 30 1 0

Status and control
IRQ J L Done
I[E — — R/W

Starting address

Word count

Figure 4.18 Registers in a DMA interface.

235

236

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

Main

memory

Processor

System bus

Disk/DMA DMA .
. . . . Printer Keyboard
controller controller /
Disk Disk Network
Interface

/\J_/

Figure 4.19 Use of DMA controllers in a computer system.

The R/W bit determines the direction of the transter. When this bit is set to | by a
program instruction. the controller performs a read operation. that is. it transfers data
from the memory to the I/O device. Otherwise. it performs a write operation. When the
controller has completed transferring a block of data and is ready to receive another
command, it sets the Done flag to 1. Bit 30 is the Interrupt-enable flag. IE. When this flag
is setto 1. it causes the controller to raise an interrupt after it has completed transferring
a block of data. Finally. the controller sets the IRQ bit to I when it has requested an
interrupt.

An example of a computer system is given in Figure 4.19. showing how DMA
controllers may be used. A DMA controller connects a high-speed network to the
computer bus. The disk controller. which controls two disks. also has DMA capability
and provides two DMA channels. It can perform two independent DM A operations. as if
eachdisk had its own DMA controller. The registers needed to store the memory address.
the word count. and so on are duplicated. so that one set can be used with each device.

To start a DMA transfer of a block of data from the main memory to one of the
disks, a program writes the address and word count information into the registers of the
corresponding channel of the disk controller. It also provides the disk controller with
information to identity the data for future retrieval. The DMA controller proceeds inde-
pendently to implement the specified operation. When the DMA transfer is completed.
this factis recorded in the status and control register of the DMA channel by setting the
Done bit. At the same time, if the 1E bit is set. the controller sends an interrupt request
to the processor and sets the IRQ bit. The status register can also be used to record
other information. such as whether the transter took place correctly or errors occurred.

4.4 DIRECT MEMORY ACCESS

Memory accesses by the processor and the DMA controllers are interwoven. Re-
quests by DMA devices for using the bus are always given higher priority than processor
requests. Among different DMA devices. top priority is given to high-speed peripherals
such as a disk. a high-speed network interface. or a graphics display device. Since the
processor originates most memory access cycles. the DMA controller can be said to
“steal™ memory cycles from the processor. Hence. this interweaving technique is usu-
ally called evele stealing. Alternatively. the DMA controller may be given exclusive
access to the main memory to transter a block of data without interruption. This is
known as block or burst mode.

Most DMA controllers incorporate a data storage butter. In the case of the network
interface in Figure 4.19. for example. the DMA controller reads a block of data from
the main memory and stores it into its input buffer. This transfer takes place using burst
mode at a speed appropriate to the memory and the computer bus Then. the data in the
buftfer are transmitted over the network at the speed of the network.

A conflict may arise i’ both the processor and a DMA controller or two DMA
controllers try to use the bus at the same time to access the main memory. To resolve
these conflicts. an arbitration procedure is implemented on the bus to coordinate the
activities of all devices requesting memory transfers.

4.4.1 BUS ARBITRATION

The device that is allowed to initiate data transfers on the bus at any given time is
called the bus master. When the current master relinquishes control of the bus, another
device can acquire this status. Bus arbitration is the process by which the next device to
become the bus master is selected and bus mastership is transferred to it. The selection
of the bus master must take into account the needs of various devices by establishing a
priority system for gaining access to the bus.

There are two approaches to bus arbitration: centralized and distributed. In central-
ized arbitration. a single bus arbiter pertorms the required arbitration. In distributed
arbitration. all devices participate in the selection of the next bus master.

Centralized Arbitration

The bus arbiter may be the processor or a separate unit connected to the bus.
Figure 4.20 illustrates a basic arrangement in which the processor contains the bus
arbitration circuitry. In this case. the processor is normally the bus master unless it
that it needs to become the bus master by activating the Bus-Request line. BR. This is
an open-drain line for the same reasons that the Interrupt-Request line in Figure 4.6
is an open-drain line. The signal on the Bus-Request fine is the logical OR of the
bus requests from all the devices connected to it. When Bus-Request is activated, the
processor activates the Bus-Grant signal. BG 1. indicating to the DMA controllers that
they may use the bus when it becomes free. This signal is connected to all DMA
controllers using a daisy-chain arrangement. Thus, if DMA controller | is requesting
the bus. it blocks the propagation of the grant signal to other devices. Otherwise. it
passes the grant downstream by asserting BG2. The current bus master indicates 1o all

237

238

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

BBSY
- r 1 -
BR
Processor 1 T
\ Y
DMA DMA
|—————=| controller »| conuoller —-m
BGI | BG2 ki

Figure 4.20 A simple arrangement for bus arbitration using a daisy

chain.
——» Time
BR [~y o -
/
BG1 (\ N

'/\

BG2

BBSY N

Bus
mastet

- - - -
FOCCSSor DMA controller 2 Processor

P

Figure 4.21 Sequence of signals during transfer of bus mastership for the devices in
Figure 4.20.

devices that it is using the bus by activating another open-collector line called Bus-
Busy. BBSY. Hence. after receiving the Bus-Grant signal. a DMA controller waits
for Bus-Busy to become inactive. then assumes mastership of the bus. At this time. it
activates Bus-Busy to prevent other devices from using the bus at the same time.

The timing diagram in Figure 4.21 shows the sequence of events for the devices in
Figure 4.20 as DMA controller 2 requests and acquires bus mastership and later releases
the bus. During its tenure as the bus master. it may perform one or more data transfer
operations. depending on whether it is operating in the cycle stealing or block mode.
After it releases the bus. the processor resumes bus mastership. This figure shows the
causal relationships among the signals involved in the arbitration process. Details of
timing. which vary significantly from one computer bus to another. are not shown.

Figure 4.20 shows one bus-request line and one bus-grant line forming a daisy
chain. Several such pairs may be provided. in an arrangement similar to that used

4.4 DIRECT MEMORY ACCESS

for multiple interrupt requests in Figure 4.8b. This arrangement leads to considerable
{lexibility in determining the order in which requests from different devices are serviced.
The arbiter circuit ensures that only one request is granted at any given time. according
to a predefined priority scheme. For example. if there are four bus request lines. BRI
through BR4. a fixed priority scheme may be used in which BR1 15 given top priority
and BR4 is given lowest priority. Alternatively. a rotating priority scheme may be used
to give all devices an equal chance of being serviced. Rotating priority means that after
arequest on tine BR1 is granted. the priorty order becomes 2. 3. 4. 1.

Distributed Arbitration

Distributed arbitration means that all devices waiting to use the bus have equal
responsibility in carrying out the arbitration process. without using a central arbiter. A
simple method for distributed arbitration is illustrated in Figure 4.22. Each device on
the bus is assigned a 4-bit identification number. When one or more devices request
the bus. they assert the Start-Arbitration signal and place their 4-bit ID numbers on
four open-collector lines. ARBO through ARB3. A winner is selected as a result of the
interaction among the signals transmitted over these lines by all contenders. The net
outcome is that the code on the four lines represents the request that has the highest ID
number.

The drivers are of the open-collector type. Hence. if the input to one driver is equal
to one and the input to another driver connected to the same bus line is equal to O the

\/14

! ARB2
ARB2
ARBI

ARBO

Start-Arbitration

ALA|A v

Interface circuit
for device A

Figure 4.22 A distributed arbitration scheme.

239

240

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

bus will be in the low-voltage state. In other words, the connection performs an OR
function in which logic | wins.

Assume that two devices, A and B, having ID numbers 5 and 6, respectively.
are requesting the use of the bus. Device A transmits the pattern 0101, and device B
transmits the pattern 0110. The code seen by both devicesis 011 1. Each device compares
the pattern on the arbitration lines to its own ID, starting from the most significant bit.
If it detects a difference at any bit position, it disables its drivers at that bit position and
for all lower-order bits. It does so by placing a 0 at the input of these drivers. In the
case of our example. device A detects a difference on line ARB1. Hence, it disables
its drivers on lines ARB1 and ARBO. This causes the pattern on the arbitration lines to
change to 0110, which means that B has won the contention. Note that, since the code
on the priority lines is 0111 for a short period, device B may temporarily disable its
driver on line ARB(). However, it will enable this driver again once it sees a 0 on line
ARBI resulting from the action by device A.

Decentralized arbitration has the advantage of offering higher reliability, because
operation of the bus is not dependent on any single device. Many schemes have been
proposed and used in practice to implement distributed arbitration. The SCSI bus de-
scribed in Section 4.7.2 provides another example.

4.5 BUSES

The processor. main memory. and 1/0 devices can be interconnected by means of a
common bus whose primary function is to provide a communications path for the
transter of data. The bus includes the lines needed to support interrupts and arbitration.
In this section. we discuss the main features of the bus protocols used for transferring
data. A bus protocol is the set of rules that govern the behavior of various devices
connected to the bus as to when to place information on the bus. assert control signals.
and so on. After describing bus protocols. we will present examples of interface circuits
that use these protocols.

The bus lines used for transferring data may be grouped into three types: data.
address.and control lines. The control signals specify whether aread or a write operation
is o be performed. Usually. a single a R/W line is used. It specifies Read when set to |
and Write when set to 0. When several operand sizes are possible, such as byte. word.
or long word, the required size of data is indicated.

The bus control signals also carry timing information. They specify the times at
which the processor and the /0 devices may place data on the bus or receive data
from the bus. A varety of schemes have been devised for the timing of data transfers
over a bus. These can be broadly classified as either synchronous or asynchronous
schemes.

Recall from Section 4.4.1 that in any data transfer operation, one device plays the
role of @ master. This is the device that initiates data transfers by issuing read or write
commands on the bus: hence. it may be called an initiator. Normally. the processor acts
as the master. but other devices with DMA capability may also become bus masters.
The device addressed by the master is referred to as a slave or target.

4.5 BUSES

4.5.1 SYNCHRONOUS BUS

In a svichronous bus. all devices derive timing information from & common clock line.
Equally spaced pulses on this line define equal time intervals. In the simplest form of a
synchronous bus. each of these intervals constitutes a bus cvele during which one data
transfer can take place. Such a scheme is illustrated in Figure 4.23. The address and data
lines in this and subsequent figures are shown as high and low at the same time. This
is a common convention indicating that some lines are high and some low. depending
on the particular address or data pattern being transmitted. The crossing points indicate
the times at which these patterns change. A signal line in an indeterminate or high
impedance state is represented by an intermediate level half-way between the low and
high signal levels.

Let us consider the sequence of events during an input (read) operation. At time
1y, the master places the device address on the address lines and sends an appropriate
command on the control lines. In this case. the command will indicate an input operation
and specify the length of the operand to be read. if necessary. Information travels over
the bus at a speed determined by its physical and electrical characteristics. The clock
pulse width. 7; — 75. must be longer than the maximum propagation delay between two
devices connected to the bus. It also has to be long enough to allow all devices to decode
the address and control signals so that the addressed device (the slave) can respond at
time ;. It is important that slaves take no action or place any data on the bus before 7;.
The information on the bus is unreliable during the period ¢, to 1, because signals are
changing state. The addressed slave places the requested input data on the data lines at
time /.

At the end of the clock cycle. at time 7-. the master strobes the data on the data
lines into its input buffer. In this context. “strobe™ means to capture the values of the

— = Time

Bus clock I

Address and
command

L

Data)..._

Bus cycle

Figure 4.23 Timing of an input transfer on a synchronous bus.

241

242

CHAPTER 4 -+ IDINPUT/OUTPUT ORGANIZATION

data at a given instant and store them into a buffer. For data 1o be loaded correctly into
any storage device. such as a register built with flip-flops. the data must be available
at the input of that device for a period greater than the setup time of the device (see
Appendix A). Hence. the period 7> — 1 must be greater than the maximum propagation
time on the bus plus the setup time of the input bufter register of the master.

A similar procedure is followed for an output operation. The master places the
output data on the data lines when it transmits the address and command information.
At time 1,. the addressed device strobes the data lines and loads the data into its data
buffer.

The timing diagram in Figure 4.23 is an idealized representation of the actions that
take place on the bus lines. The exact imes at which signals actually change state are
somewhat different irom those shown because of propagation delays on bus wires and
in the circuits of the devices. Figure 4.24 gives a more realistic picture of what happens
in practice. It shows two views of each signal. except the clock. Because signals take
time o travel from one device to another. a given signal transition is seen by different
devices at different times. One view shows the signal as seen by the master and the
other as seen by the slave. We assume that the clock changes are seen at the same time
by all devices on the bus. System designers spend considerable effort to ensure that the
clock signal satisfies this condition.

—— Time

Bus clock

Seen by master
A

Address and X X
command
. / >
Data \

b

Seen by slave
Address and ' X
command X
Data IL)—

U

1 I/ -

Figure 4.24 A detailed timing diagram for the input transfer of Figure 4.23.

4.5 BUSES

The master sends the address and command signals on the rising edge at the
beginning of clock period | (7y). However. these signals do not actually appear on the
bus until 14py. largely due to the delay in the bus driver circuit. A while later. at 145.
the signals reach the slave. The slave decodes the address and at 7y sends the requested
data. Here again. the data signals do not appear on the bus until ry5. They travel toward
the master and arrive at fpag. At 1-. the master loads the data imto 1ts input buffer. Hence
the period 1> — 1y is the setup time for the master’s input bufter. The data must continue
to be valid after 7> for a period equal to the hold time of that bufTer.

Timing diagrams in the literature often give only the simplified picture in Fig-
ure +.23. particularly when the intent is to give a conceptual overview of how data are
transferred. But, actual signals will always involve delays as shown in Figure 4.24.

Multiple-Cycle Transfers

The scheme described above results in a simple design for the device interface.
However. it has some limitations. Because a transfer has to be completed within one
clock cycle. the clock period. 1> — 5. must be chosen to accommodate the longest delays
on the bus and the slowest device interface. This forces all devices to operate at the
speed of the slowest device.

Also. the processor has no way of determining whether the addressed device has
actually responded. It simply assumes that. at £>. the output data have been received
by the 1/0 device or the input data are available on the data lines. If. because of a
malfunction, the device does not respond. the error will not be detected.

To overcome these limitations, most buses incorporate control signals that represent
aresponse from the device. These signals inform the master that the slave has recognized
its address and that it is ready to participate in a data-transter operation. They also make
it possible to adjust the duration of the data-transfer period to suit the needs of the
participating devices. To simplify this process. a high-frequency clock signal is used
such that a complete data transfer cycle would span several clock cycles. Then. the
number of clock cycles involved can vary from one device to another.

An example of this approach is shown in Figure 4.25. During clock cycle 1. the
master sends address and command information on the bus. requesting a read operation.
The slave receives this information and decodes it. On the following active edge of the
clock. that is. at the beginning of clock cycle 2. it makes a decision to respond and begins
to access the requested data. We have assumed that some delay 15 involved in getting
the data, and hence the slave cannot respond immediately. The data become ready and
are placed on the bus in clock cycle 3. At the same time. the slave asserts a control
signal called Slave-ready. The master. which has been waiting for this signal. strobes
the data into its input butfer at the end of clock cycle 3. The bus transfer operation is now
complete. and the master may send anew address to starta new transferin clock cycle 4.

The Slave-ready signal is an acknowledgment from the slave to the master. con-
firming that valid data have been sent. In the example in Figure 4.25. the slave responds
in cycle 3. Another device may respond sooner or later. The Slave-ready signal allows
the duration of a bus transfer to change tfrom one device to another. If the addressed
device does not respond at all. the master waits for some predetined maximum num-
ber of clock cycles. then aborts the operation. This could be the result of an incorrect
address or a device malfunction.

243

244

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

— = Time

Clock

Address X X
Command X X
CDO——
Data

Slave-ready

Figure 4.25 An input transfer using multiple clock cycles.

Note that the clock signal used on a computer bus is not necessarily the same as the
processor clock. The latter is often much faster because it controls internal operation
on the processor chip. The delays encountered by signals internal to a chip are much
less than on a bus that interconnects chips on a printed circuit board. for example.
Clock frequencies are highly technology dependent. In modern processor chips. clock
frequencies above 500 MHz are typical. On memory and I/O buses. the clock frequency
may be in the range 50 to 150 MHz.

Many computer buses. such as the processor buses of Pentium and ARM. usc a
scheme similar to that illustrated in Figure 4.25 to control the transfer of data. The
PCI bus standard described in Section 4.7.1 is also very similar. We will now present a
different approach that does not use a clock signal at all.

4.5.2 ASYNCHRONOUS Bus

An alternative scheme for controlling data transfers on the bus is based on the use
of a handshake between the master and the slave. The concept of a handshake is a
generalization of the idea of the Slave-ready signal in Figure 4.25. The common clock
is replaced by two timing control lines. Master-ready and Slave-ready. The first is
asserted by the master to indicate that it is ready for a transaction. and the second is a
response from the slave.

[n principle, a data transfer controlled by a handshake protocol proceeds as follows.
The master places the address and command information on the bus. Then it indicates

4.5 BUSES

— = Time
Address
and command

Master-ready —<

Slave-ready

Data)—

Ly 4 1%} (3 &1 {5

Bus cycle

Figure 4.26 Handshake control of data transfer during an input operation.

to all devices that it has done so by activating the Master-ready line. This causes all
devices on the bus to decode the address. The selected slave performs the required
operation and informs the processor it has done so by activating the Slave-ready line.
The master waits for Slave-rcady to become asserted before it removes its signals from
the bus. In the case of a read operation. it also strobes the data into its input buffer.

An example of the timing of an input data transfer using the handshake scheme is
eiven in Figure 4.26. which depicts the following sequence of events:

1y — The master places the address and command information on the bus. and all
devices on the bus begin to decode this information.

11 — The master sets the Master-ready line to | to inform the 1/0 devices that the
address and command information is ready. The delay 7, — 1, is intended to allow
for any skew that may occur on the bus. Skew occurs when two signals
simultaneously transmitted from one source arrive at the destination at different
times. This happens because different lines of the bus may have different
propagation speeds. Thus. to guarantee that the Master-ready signal does not
arrive at any device ahead of the address and command information. the delay

11 — tp should be larger than the maximum possible bus skew. (Note that. in the
synchronous case. bus skew is accounted for as a part of the maximum
propagation delay.) When the address information arrives at any device. it is
decoded by the interface circuitry. Sufficient time should be allowed for the
interface circuitry to decode the address. The delay needed can be included in
the period 1, — 1.

245

246

Address
and command Ve

CHAPTER 4 -+ INPUT/OUTPUT ORGANIZATION

1> — The selected slave, having decoded the address and command information.
performs the required input operation by placing the data from its data register on
the data lines. At the same time, it sets the Slave-ready signal to 1. If extra delays
are introduced by the interface circuitry before it places the data on the bus, the
slave must delay the Slave-ready signal accordingly. The period 1, — #; depends
on the distance between the master and the slave and on the delays introduced by
the slave’s circuitry. It is this variability that gives the bus its asynchronous nature.
13 — The Slave-ready signal arrives at the master, indicating that the input data
are available on the bus. However, since it was assumed that the device interface
transmits the Slave-ready signal at the same time that it places the data on the bus,
the master should allow for bus skew. It must also allow for the setup time needed
by its input buffer. After a delay equivalent to the maximum bus skew and the
minimum setup time. the master strobes the data into its input buffer. At the same
time, it drops the Master-ready signal, indicating that it has received the data.

14 — The master removes the address and command information from the bus.
The delay between 13 and 14 is again intended to allow for bus skew. Erroneous
addressing may take place if the address, as seen by some device on the bus, starts
to change while the Master-ready signal is still equal to 1.

ts — When the device interface receives the 1 to 0 transition of the Master-ready
signal, it removes the data and the Slave-ready signal from the bus. This
completes the input transfer.

The timing for an output operation, illustrated in Figure 4.27, is essentially the same

as for an input operation. In this case, the master places the output data on the data lines

— = Time

Data —(/_»}—_
Master-ready B (—~ ——<
Slave-ready L -
t ¥ t> 1y 1y ls
Bus cvele

Figure 4.27 Handshake control of data transfer during an output operation.

4.5 BUSES

at the same time that it transmits the address and command mformation. The selected
slave strobes the data into its output buffer when it receives the Master-ready signal
and indicates that it has done so by setting the Slave-ready signal to 1. The remainder
of the cycle is identical to the input operation.

In the timing diagrams in Figures 4.26 and 4.27. it is assumed that the mas-
ter compensates for bus skew and address decoding delay. 1t introduces the delays
from 14 1o t; and from 13 to 1y for this purpose. If this delay provides sufficient
time for the I/O device interface to decode the address. the interface circuit can
use the Master-ready signal directly o gate other signals to or from the bus. This
point will become clearer when we study the interface circuit examples in the next
section. '

The handshake signals in Figures 4.26 and 4.27 are fully interlocked. A change
of state in one signal is followed by a change in the other signal. Hence this scheme
is known as a full handshake. It provides the highest degree of flexibility and relia-
bility.

4.5.3 DISCUSSION

Many variations of the bus techniques just described are found in commercial com-

puters. For example. the bus in the 68000 family of processors has two modes of

operation. one asynchronous and one synchronous. The choice of a particular design
involves trade-offs among factors such as:

« Simplicity of the device interface

» Ability 1o accommodate device interfaces that introduce different amounts of

delay
e Total time required for a bus transfer
« Ability to detect errors resulting from addressing a nonexistent device or from an
interface malfunction
The main advantage of the asynchronous bus is that the handshake process elimi-
nates the need for synchronization of the sender and receiver clocks. thus simplifying
timing design. Delays. whether introduced by the interface circuits or by propagation
over the bus wires. are readily accommodated. When these delays change. for example.

due to a change in load when an interface circuit is added or removed. the timing of

data transfer adjusts automatically based on the new conditions. Fora synchronous bus,
clock circuitry must be designed carefully to ensure proper synchronization. and delays
must be kept within strict bounds.

The rate of data transfer on an asynchronous bus controlled by a full handshake
is limited by the fact that each transfer involves two round-trip defays (four end-to-
end delays). This can be readily seen in Figures 4.26 and 4.27 as cach transition on
Slave-ready must wait for the arrival of a transition on Master-ready. and vice versa. On
synchronous buses. the clock period need only accommodate one end-to-end propaga-
tion delay. Hence. faster transfer rates can be achieved. To accommodate a slow device.
additional clock cycles are used. as described above. Most of today’s high-speed buses
use this approach.

247

248

s

CHAPTER 4 -« INPUT/OUTPUT ORGANIZATION

4.6 INTERFACE CIRCUITS

An /O interface consists of the circuitry required to connect an I/O device to a computer
bus. On one side of the interface we have the bus signals for address. data. and control.
On the other side we have a data path with its associated controls to transfer data between
the interface and the 1/0 device. This side is called a port. and it can be classified as
either a parallel or a serial port. A parallel port transfers data in the form of a number
of bits. typically 8 or 16, simultaneously to or from the device. A serial port transmits
and receives data one bit at a time. Communication with the bus is the same for both
formats: the conversion from the parallel to the serial format. and vice versa. takes place
inside the interface circuit.

In the case of a parallel port. the connection between the device and the computer
uses a multiple-pin connector and a cable with as many wires. typically arranged in a
flat configuration. The circuits at either end are relatively simple. as there is no need
to convert between parallel and serial formats. This arrangement is suitable for devices
that are physically close to the computer. For longer distances. the problem of timing
skew mentioned earlier limits the data rates that can be used. The serial format is much
more convenient and cost-effective where fonger cables are needed. Serial transmission
formats will be discussed in Chapter 10.

Betore discussing a specific interface circuit example. let us recall the tunctions of
an IO interface. According to the discussion in Section 4.1, an 1/0 interface does the
following:

I Provides a storage buffer for at least one word of data (or one byte. in the case of
byte-oriented devices)

(39

Contains status flags that can be accessed by the processor to determine whether

the buffer is full (for input) or empty (for output)

3. Contains address-decoding circuitry to determine when it is being addressed by
the processor

4. Generates the appropriate timing signals required by the bus control scheme

5. Performs any format conversion that may be necessary to transfer data between the

bus and the I/O device. such as parallel-serial conversion in the case of a serial port

4.6.1 PARALLEL PORT

We now explain the key aspects of interface design with a practical example. First. we
describe circuits for an 8-bit input port and an 8-bit output port. Then, we combine the
two cireuits to show how the interface for a general-purpose 8-bit parallel port can be
designed. We assume that the interface circuit is connected to a 32-hit processor that
uses memory-mapped I/0 and the asynchronous bus protocol depicted in Figures 4.26
and 4.27. We will also show how the design can be modified to suit the bus protocol in
Figure 4.25.

Figure 4.28 shows the hardware components needed for connecting a keyboard
to a processor. A typical keyboard consists of mechanical switches that are normally

4.6 INTERFACE CIRCUITS

Data

Address
Data

Encoder

R R/W and Keyboard
Processor b . . .

debouncing switches

Master-ready T .

as ady . 1
- Valid cireutt .
B ——

Slave-ready
e —

. imterface

Figure 4.28 Keyboard to processor connection.

open. When a key is pressed. its switch closes and establishes a path for an electrical
signal. This signal is detected by an encoder circuit that generates the ASCII code
for the corresponding character. A difficulty with such push-button switches is that
the contacts bounce when a key is pressed. Although bouncing may last only one or
two milliseconds. this is long enough for the computer to observe a single pressing
of a key as several distinct electrical events: this single pressing could be erroneously

interpreted as the key being pressed and released rapidly several times. The etfect of

bouncing must be eliminated. We can do this in two ways: A simple debouncing cireuit
can be included. or a software approach can be used. When debouncing is implemented
in software. the 1/0 routine that reads a character from the keyboard waits long enough
to ensure that bouncing has subsided. Figure 4.28 illustrates the hardware approach:
debouncing circuits are included as a part of the encoder block.

The output of the encoder consists of the bits that represent the encoded character
and one control signal called Valid. which indicates that a key is being pressed. This
information is sent to the interface circuit, which contains a data register. DATAIN,
and a status flag. SIN. When a key is pressed. the Valid signal changes from 0 to 1.
causing the ASCII code to be loaded into DATAIN and SIN to be set to 1. The status flag
SIN is cleared 1o 0 when the processor reads the contents of the DATAIN register. The
interface circuit is connected to an asynchronous bus on which transfers are controlled
using the handshake signals Master-ready and Slave-ready. as indicated in Figure 4.26.
The third control line. R/W distinguishes read and write transfers.

Figure 4.29 shows a suitable circuit for an input interface. The output lines of the
DATAIN register are connected to the data lines of the bus by means of three-state
drivers. which are turned on when the processor issues a read instruction with the ad-
dress that selects this register. The SIN signal is generated by a status flag circuit. This
signal is also sent to the bus through a three-state driver. It is connected to bit DO.
which means it will appear as bit 0 of the status register. Other bits of this register do
not contain valid information. An address decoder is used to select the input interface
when the high-order 31 bits of an address correspond to any of the addresses assigned
to this interface. Address bit AO determines whether the status or the data registers is to
be read when the Master-ready signal is active. The control handshake is accomplished
by activating the Slave-ready signal when either Read-status or Read-data isequal to 1.

249

250 CHAPTER 4 -+« INPUT/OUTPUT ORGANIZATION

DATAIN
D7 \/NL Q Do
: ° . Keyboard
. . . data
DO \\I Qy Dil=——
A
SIN .
*—<NI Status | Valid
flag
Slave- | £
ready Y
Read-
status Read
data
R/W
Master-
ready

A3l ——

Address
decoder

Al ——»

A0

Figure 4.29 Input interface circuit.

A possible implementation of the status flag circuit is shown in Figure 4.30. An
edge-triggered D flip-flop is set to | by a rising edge on the Valid signal line. This
event changes the state of the NOR latch such that SIN is set to I. The state of this
latch must not change while SIN is being read by the processor. Hence. the circuit
ensures that SIN can be set only while Master-ready is equal to 0. Both the flip-
flop and the latch are reset to 0 when Read-data is set to | to read the DATAIN
register.

4.6 INTERFACE CIRCUITS

SIN

Read-data >

Master-ready -——DC) _ﬁ'

Q DpF—1

Q <4— valid

——T Clear

Figure 4.30 Circuit for the status flag block in Figure 4.29.

Data
Address DATAOUT' J Data
—] , A
Processor _L D SOUT B valid Printer
Master-cady - ;
OU{Pﬂt : Idle
Slave-ready interface -

Figure 4.31 Printer to processor connection.

Letus now consider an output interface that can be used to connectan output device.
such as a printer. to a processor. as shown in Figure 4.31. The printer operates under
control of the handshake signals Valid and Idle in a manner similar to the handshake
used on the bus with the Master-ready and Slave-ready signals. When it is ready to
accept a character, the printer asserts its Idle signal. The interface circuit can then place
4 new character on the data lines and activate the Valid signal. In response. the printer
starts printing the new character and negates the Idle signal. which in turn causes the
interface 1o deactivate the Valid signal.

The interface contains a data register. DATAOUT. and a status flag. SOUT. The
SOUT flag is set to 1 when the printer is ready to accept another character. and it is
cleared to O when anew character is loaded into DATAOUT by the processor. Figure 4.32

251

252 CHAPTER 4

INPUT/OUTPUT ORGANIZATION

DATAOUT
D7 D. Q —
: : Printer
data
D1 D, Q
DO Du Ql) -
AN
SOUT
\\J - Handshake [=— ldle
Slave- - control L - Valid
ready ! [
Read-
status Load-
data

R/W DOJ

Master-
ready

Address
decoder

A0

Figure 4.32 Output interface circuit.

shows an implementation of this interface. Its operation is similar to the input interface
of Figure 4.29. The only significant difference is the handshake control circuit, the
detailed design of which we leave as an exercise for the reader.

The input and output interfaces just described can be combined into a single in-
terface, as shown in Figure 4.33. In this case, the overall interface is selected by the
high-order 30 bits of the address. Address bits A1 and A0 select one of the three ad-
dressable locations in the interface, namely, the two data registers and the status register.
The status register contains the flags SIN and SOUT in bits 0 and 1, respectively. Since

D7

D1
DO

Slave-
Ready

Master-
Ready

R/W

A3l

Al

A0

4.6 INTERFACE CIRCUITS

<1 - PA7
™~
X DATAIN
<1 -———— PAO
Y .
SIN
[nput
- status i CA
[
- = PB7
DATAOUT
- = PB0
O\
SOUT

1

Handshake CBI
.| conuwol | o g2

Y

]
[
|

Address

<>

My-address

decoder

RS1

L

RSO

D>

Figure 4.33 Combined input/output interface circuit.

253

254

CHAPTER 4 -

INPUT/OUTPUT ORGANIZATION

such locations in I/O interfaces are often referred to as registers, we have used the labels
RS1 and RSO (for Register Select) to denote the two inputs that determine the register

being selected.

The circuit in Figure 4.33 has separate input and output data lines for connection
to an I/O device. A more flexible parallel port is created if the data lines to I/O devices
are bidirectional.| Figure 4.34 shows a general-purpose parallel interface circuit that
can be configured in a variety of ways. Data lines P7 through PO can be used for either
input or output purposes. For increased flexibility, the circuit makes it possible for some
lines to serve as inputs and some lines to serve as outputs, under program control. The

D7

DO

My-address
RS2

RS

RSO
R/W

Ready
Accept

INTR

Figure 4.34

§} P7
: DATAIN °
4 » PO
1
. ?
DATAOUT .
N
| g
L
Data
Direction
Register
— |
——
—_— | > l
Register suas ‘
L ‘ and
L select control -— - (2
———
- el

A general 8-bit parallel interface.

4.6 INTERFACE CIRCUITS

DATAOUT register is connected to these lines via three-state drivers that are controlled
by a data direction register, DDR. The processor can write any 8-bit pattern into DDR.
For a given bit. if the DDR value is 1, the corresponding data line acts as an output line:
otherwise. it acts as an input line.

Two lines, C1 and C2, are provided to control the interaction between the interface
circuit and the /O device it serves. These lines are also programmable. Line C2 is
bidirectional to provide several different modes of signaling, including the handshake.
Not all the internal details are shown in the figure, but we can see how they may
correspond to those in Figure 4.33. The Ready and Accept lines are the handshake
control lines on the processor bus side, and hence would be connected to Master-ready
and Slave-ready. The input signal My-address should be connected to the output of an
address decoder that recognizes the address assigned to the interface. There are three
register select lines. allowing up to eight registers in the interface. input and output
data, data direction, and control and status registers for various modes of operation.
An interrupt request output, INTR. is also provided. It should be connected to the
interrupt-request line on the computer bus.

Parallel interface circuits that have the features illustrated in Figure 4.34 are often
encountered in practice. An example of their use in an embedded system is described
in Chapter 9. Instead of having just one port for connecting an 1/O device, two or more
ports may be provided.

Let us now examine how the interface circuits in Figures 4.28 to 4.34 can be changed
to work with the bus protocol of Figure 4.25. A modified circuit for the interface in
Figure 4.32 is shown in Figure 4.35. We have introduced the Timing logic block to
generate the Load-data and Read-status signals. The state diagram for this block is
given at the bottom of the figure. Initially. the machine is in the Idle state. When the
output of the address decoder. My-address. shows that this interface is being addressed.
the machine changes state to Respond. As a result it asserts Go, which in turn asserts
either Load-data or Read-status. depending on address bit A0 and the state of the
R/W line.

A timing diagram for an output operation is shown in Figure 4.36. The processor
sends the data at the same time as the address, in clock cycle 1. The Timing logic sets
Go to | at the beginning of clock cycle 2. and the rising edge of that signal loads the
output data into register DATAOUT. An input operation that reads the status register
follows a similar timing pattern. The Timing logic block moves to the Respond state
directly from the Idle state because the requested data are available in a register and can
be transmitted immediately. As a result, the transfer is one clock cycle shorter than that
shown in Figure 4.25. In a situation where some time is needed before the data becomes
available, the state machine should enter a wait state first and move to Respond only
when the data are ready.

In concluding the discussion of these interface circuit examples. we should point
out that we have used simplified representations of some signals to help in readabil-
ity and understanding of the ideas. In practice, the Slave-ready signal is likely to be
an open-drain signal and would be called Slave-ready. for the same reasons as for
INTR. This line must have a pull-up resistor connected to ensure that it is always
in the negated (high-voltage) state except when it is asserted (pulled down) by some
device.

255

256 CHAPTER 4

INPUT/OUTPUT ORGANIZATION

- [dle

F— Valid

DATAOUT
D7 D7 Q7
: Printer
data
DO D1 Qi -
DO Do Qo >
JAN
A SOUT
\\l Handshake
- control
Read Load)
status data
R/W Il:
Slave-
ready
Go
A3l
Address My-address Timing
decoder Logic
Al
A0
Clock

My-address

7N

Figure 4.35 A parcllel port interface for the bus of Figure 4.25, with a state-diagram

for the timing logic.

4.6 INTERFACE CIRCUITS

= Time

Clock

Address X X
R/W
Data __()_—

Go

Slave-ready

Figure 4.36 Timing for the output interface in Figure 4.35.

;1.6.2 SERIAL PORT

A serial port s used to connect the processor to 1/O devices that require transmission of

data one bit at a time. The key feature of an interface circuit for a serial port is that it is
capable of communicating in a bit-serial fashion on the device side and in a bit-parallel
tashion on the bus side. The transformation between the parallel and serial formats
is achieved with shift registers that have parallel access capability. A block diagram
of a typical serial interface is shown in Figure 4.37. It includes the familiar DATAIN
and DATAOUT registers. The input shift register accepts bit-serial input from the I/O
device. When all 8 bits ot data have been received. the contents of this shift register are
loaded in parallel into the DATAIN register. Similarly. output data in the DATAOUT
register are loaded into the output shift register. from which the bits are shifted out and
sent to the I/O device.

The part of the interface that deals with the bus is the same as in the parallel interface
described earlier. The status flags SIN and SOUT serve similar functions. The SIN flag
is set to | when new data are loaded in DATAIN: it is cleared to O when the processor
reads the contents of DATAIN. As soon as the data are transferred from the input shift
register into the DATAIN register. the shift register can start accepting the next 8-bit
character from the /O device. The SOUT Hag indicates whether the output buffer is
available. It is cleared to O when the processor writes new data into the DATAOUT

257

258

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

Input shift register ?lflr)'&lll
| /
DATAIN
D7
DO
Y [
DATAOUT
My-address ——
RSl ——
i '
RSO ——= Chip and Serial
R/W —— r:a‘*z‘;r Output shift register (‘)J[p‘m
h (&
Ready ——
Accept -—j
- Status -——— Receiving clock
INTR - and
contro} .
~«—— Transmission clock

Figure 4.37 A serial inferface.

register and set to | when data are transferred from DATAOUT into the output shift
register.

The double buftering used in the input and output paths is important. A simpler
interface could be implemented by turning DATAIN and DATAOUT into shift registers
and eliminating the shift registers in Figure 4.37. However, this would impose awkward
restrictions on the operation of the I/0 device; after receiving one character from the
serial line, the device cannot start receiving the next character until the processor reads
the contents of DATAIN. Thus. a pause would be needed between two characters to
allow the processor to read the input data. With the double buffer, the transfer of the
second character can begin as soon as the first character is loaded from the shift register
into the DATAIN register. Thus, provided the processor reads the contents of DATAIN
before the serial transfer of the second character is completed, the interface can receive

